【基础算法 2.6】并查集(更新中……)

目录

一、836 合并集合

二、837 连通块中点的数量

三、240 食物链

int find(int x) //返回x的祖宗结点+状态压缩
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}

p[find(a)]=find(b); //合并操作 给a认个祖宗b

if(find(a)==find(b)) //a和b元素在同一个集合

 

一、836 合并集合

一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。

现在要进行 m 个操作,操作共有两种:

  1. M a b,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;
  2. Q a b,询问编号为 a 和 b 的两个数是否在同一个集合中;

输入格式

第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 M a b 或 Q a b 中的一种。

输出格式

对于每个询问指令 Q a b,都要输出一个结果,如果 a 和 b 在同一集合内,则输出 Yes,否则输出 No

每个结果占一行。

数据范围

1≤n,m≤10^5

输入样例

4 5
M 1 2
M 3 4
Q 1 2
Q 1 3
Q 3 4

输出样例:

Yes
No
Yes
#include <iostream>
using namespace std;

const int N=1e5+10;
int n,m;
int p[N];

int find(int x) //返回x的祖宗结点+状态压缩
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}

int main()
{
    scanf("%d %d",&n,&m);
    for(int i=1;i<=n;i++) p[i]=i;
    
    while(m--)
    {
        char op;
        int a,b;
        cin>>op>>a>>b;
        if(op=='M') p[find(a)]=find(b); //给a树认个祖宗b树
        else
        {
            if(find(a)==find(b)) cout<<"Yes"<<endl;
            else cout<<"No"<<endl;
        }
    }
}

二、837 连通块中点的数量

给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。

现在要进行 m 个操作,操作共有三种:

  1. C a b,在点 a 和点 b 之间连一条边,a 和 b 可能相等;
  2. Q1 a b,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;
  3. Q2 a,询问点 a 所在连通块中点的数量;

输入格式

第一行输入整数 n 和 m。

接下来 m 行,每行包含一个操作指令,指令为 C a bQ1 a b 或 Q2 a 中的一种。

输出格式

对于每个询问指令 Q1 a b,如果 a 和 b 在同一个连通块中,则输出 Yes,否则输出 No

对于每个询问指令 Q2 a,输出一个整数表示点 a 所在连通块中点的数量

每个结果占一行。

数据范围

1≤n,m≤105

输入样例:

5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5

输出样例:

Yes
2
3
#include <iostream>
#include <cstdio>
using namespace std;

const int N=1e5+10;
int n,m;
int p[N],s[N]; //s用于存联通块内结点个数

int find(int x) //返回x的祖宗结点+状态压缩
{
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}

int main()
{
    scanf("%d %d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        p[i]=i;
        s[i]=1;
    }
    
    while(m--)
    {
        char op[5];
        int a,b;
        scanf("%s",op);
        
        if(op[0]=='C')
        {
            scanf("%d%d",&a,&b);
            if(find(a)==find(b)) continue; //如果已经在一个集合里 则不需要合并
            s[find(b)]+=s[find(a)]; //b联通块的结点数目要加上a的
            p[find(a)]=find(b); 
        }
        else if(op[1]=='1')
        {
            scanf("%d%d",&a,&b);
            if(find(a)==find(b)) puts("Yes");
            else puts("No");
        }
        else
        {
            scanf("%d",&a);
            printf("%d\n",s[find(a)]);
        }
    }
    return 0;
}

三、240 食物链

动物王国中有三类动物 A,B,C 这三类动物的食物链构成了有趣的环形。

A 吃 B,B 吃 C,C 吃 A。

现有 N 个动物,以 1∼N编号。

每个动物都是 A,B,C 中的一种,但是我们并不知道它到底是哪一种。

有人用两种说法对这 N 个动物所构成的食物链关系进行描述:

第一种说法是 1 X Y,表示 X 和 Y 是同类。

第二种说法是 2 X Y,表示 X 吃 Y。

此人对 N 个动物,用上述两种说法,一句接一句地说出 K 句话,这 K 句话有的是真的,有的是假的。

当一句话满足下列三条之一时,这句话就是假话,否则就是真话。

  1. 当前的话与前面的某些真的话冲突,就是假话;
  2. 当前的话中 X 或 Y 比 N 大,就是假话;
  3. 当前的话表示 X 吃 X,就是假话。

你的任务是根据给定的 N 和 K 句话,输出假话的总数。

输入格式

第一行是两个整数 N 和 K,以一个空格分隔。

以下 K 行每行是三个正整数 D,X,Y 两数之间用一个空格隔开,其中 D 表示说法的种类。

若 D=1,则表示 X 和 Y 是同类。

若 D=2,则表示 X 吃 Y。

输出格式

只有一个整数,表示假话的数目。

数据范围

1≤N≤50000
0≤K≤100000

输入样例:

100 7
1 101 1 
2 1 2
2 2 3 
2 3 3 
1 1 3 
2 3 1 
1 5 5

输出样例:

3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值