目录
int find(int x) //返回x的祖宗结点+状态压缩
{
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
}
p[find(a)]=find(b); //合并操作 给a认个祖宗b
if(find(a)==find(b)) //a和b元素在同一个集合
一、836 合并集合
一共有 n 个数,编号是 1∼n,最开始每个数各自在一个集合中。
现在要进行 m 个操作,操作共有两种:
M a b
,将编号为 a 和 b 的两个数所在的集合合并,如果两个数已经在同一个集合中,则忽略这个操作;Q a b
,询问编号为 a 和 b 的两个数是否在同一个集合中;输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为
M a b
或Q a b
中的一种。输出格式
对于每个询问指令
Q a b
,都要输出一个结果,如果 a 和 b 在同一集合内,则输出Yes
,否则输出No
。每个结果占一行。
数据范围
1≤n,m≤10^5
输入样例:
4 5 M 1 2 M 3 4 Q 1 2 Q 1 3 Q 3 4
输出样例:
Yes No Yes
#include <iostream>
using namespace std;
const int N=1e5+10;
int n,m;
int p[N];
int find(int x) //返回x的祖宗结点+状态压缩
{
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++) p[i]=i;
while(m--)
{
char op;
int a,b;
cin>>op>>a>>b;
if(op=='M') p[find(a)]=find(b); //给a树认个祖宗b树
else
{
if(find(a)==find(b)) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
}
}
二、837 连通块中点的数量
给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。
现在要进行 m 个操作,操作共有三种:
C a b
,在点 a 和点 b 之间连一条边,a 和 b 可能相等;Q1 a b
,询问点 a 和点 b 是否在同一个连通块中,a 和 b 可能相等;Q2 a
,询问点 a 所在连通块中点的数量;输入格式
第一行输入整数 n 和 m。
接下来 m 行,每行包含一个操作指令,指令为
C a b
,Q1 a b
或Q2 a
中的一种。输出格式
对于每个询问指令
Q1 a b
,如果 a 和 b 在同一个连通块中,则输出Yes
,否则输出No
。对于每个询问指令
Q2 a
,输出一个整数表示点 a 所在连通块中点的数量每个结果占一行。
数据范围
1≤n,m≤105
输入样例:
5 5 C 1 2 Q1 1 2 Q2 1 C 2 5 Q2 5
输出样例:
Yes 2 3
#include <iostream>
#include <cstdio>
using namespace std;
const int N=1e5+10;
int n,m;
int p[N],s[N]; //s用于存联通块内结点个数
int find(int x) //返回x的祖宗结点+状态压缩
{
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
{
p[i]=i;
s[i]=1;
}
while(m--)
{
char op[5];
int a,b;
scanf("%s",op);
if(op[0]=='C')
{
scanf("%d%d",&a,&b);
if(find(a)==find(b)) continue; //如果已经在一个集合里 则不需要合并
s[find(b)]+=s[find(a)]; //b联通块的结点数目要加上a的
p[find(a)]=find(b);
}
else if(op[1]=='1')
{
scanf("%d%d",&a,&b);
if(find(a)==find(b)) puts("Yes");
else puts("No");
}
else
{
scanf("%d",&a);
printf("%d\n",s[find(a)]);
}
}
return 0;
}
三、240 食物链
动物王国中有三类动物 A,B,C 这三类动物的食物链构成了有趣的环形。
A 吃 B,B 吃 C,C 吃 A。
现有 N 个动物,以 1∼N编号。
每个动物都是 A,B,C 中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这 N 个动物所构成的食物链关系进行描述:
第一种说法是
1 X Y
,表示 X 和 Y 是同类。第二种说法是
2 X Y
,表示 X 吃 Y。此人对 N 个动物,用上述两种说法,一句接一句地说出 K 句话,这 K 句话有的是真的,有的是假的。
当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
- 当前的话与前面的某些真的话冲突,就是假话;
- 当前的话中 X 或 Y 比 N 大,就是假话;
- 当前的话表示 X 吃 X,就是假话。
你的任务是根据给定的 N 和 K 句话,输出假话的总数。
输入格式
第一行是两个整数 N 和 K,以一个空格分隔。
以下 K 行每行是三个正整数 D,X,Y 两数之间用一个空格隔开,其中 D 表示说法的种类。
若 D=1,则表示 X 和 Y 是同类。
若 D=2,则表示 X 吃 Y。
输出格式
只有一个整数,表示假话的数目。
数据范围
1≤N≤50000
0≤K≤100000输入样例:
100 7 1 101 1 2 1 2 2 2 3 2 3 3 1 1 3 2 3 1 1 5 5
输出样例:
3