【算法5.1】背包问题 - 01背包 (至多最大价值、至少最小价值)

目录

至少模板和至多模板的两大区别

1、至多模板

2、至少模板

2. 01背包 - 至多模板 - 体积至多j,总价值最大

1、朴素做法 - 二维dp 

2、优化 - 一维dp

4700. 何以包邮? - 至少模板 - 价值至少j,总价值最小


 

至少模板和至多模板的两大区别

  • 初始化不同
  • 至多模板求的是最大值,所以初始化为f[0~m]=0
  • 至少模板求的是最小值,所以初始化为f[0]=0  f[1~m]=0x3f3f3f3f
  • j 循环范围不同:
  • 至多模板 for(int j=m;j>=w[i];j--) f[j] = max(f[j] , f[ j-w[i] ] + w[i])
  • 至少模板 for(int j=m;j>=0;j--) f[j] = min(f[j] , f[ max(j-w[i] , 0) ] + w[i])

1、至多模板

class Main
{
    static int N=1010;
    static int[] v=new int[N],w=new int[N];
    static int[] f=new int[N];
    
    //f[j] 总体积至多j的情况下,最大价值
    public static void main(String[] args)
    {
        Scanner sc=new Scanner(System.in);
        int n=sc.nextInt(),m=sc.nextInt();
        for(int i=1;i<=n;i++) {v[i]=sc.nextInt();w[i]=sc.nextInt();}
        
        f[0]=0; //初始化 不选物品 总价值为0

        for(int i=1;i<=n;i++)
            for(int j=m;j>=v[i];j--)
                f[j]=Math.max(f[j],f[j-v[i]]+w[i]);

        System.out.print(f[m]);
    }
}

2、至少模板

class Main
{
    static int N=35,M=30*10000+10;
    static int[] w=new int[N];
    static int[] f=new int[M];
    static int n,x;
    
    public static void main(String[] args)
    {
        Scanner sc=new Scanner(System.in);
        n=sc.nextInt();x=sc.nextInt();
        for(int i=1;i<=n;i++)  w[i]=sc.nextInt(); 
     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值