在anaconda中创建、删除虚拟环境并安装卸载包等问题

一 虚拟环境 virtual environment

它是一个虚拟化,从电脑独立开辟出来的环境。通俗的来讲,虚拟环境就是借助虚拟机docker来把一部分内容独立出来,我们把这部分独立出来的东西称作“容器”,在这个容器中,我们可以只安装我们需要的依赖包,各个容器之间互相隔离,互不影响。譬如,本次学习需要用到Django,我们可以做一个Django的虚拟环境,里面只需要安装Django相关包就可以了,需要Scrapy库,就在开辟一个独立空间来学习Scrapy库相关就行了。

二  前言:为什么要用虚拟环境

在实际项目开发中,我们通常会根据自己的需求去下载各种相应的框架库,如Scrapy、Beautiful Soup等,但是可能每个项目使用的框架库并不一样,或使用框架的版本不一样,这样需要我们根据需求不断的更新或卸载相应的库。直接怼我们的Python环境操作会让我们的开发环境和项目造成很多不必要的麻烦,管理也相当混乱。

conda --version 检查版本

conda info --envs 检查现有的虚拟环境

conda search --full --name tensorflow 检查可以使用的安装包有哪些

conda search tensorflow --info 检查tensorflow包信息及其依赖关系

1.创建一个python版本3.6的虚拟anaconda环境,环境名称为xxx

conda create -n niubi python==3.7

(注意这里要根据安装包依赖的版本去创建对应python版本,不同环境下python版本不同)

2.conda activate xxx 启动新环境,并在新环境内安装卸载包,其余编译器无法使用此环境的包

(注意不进入新环境,默认安装包在anaconda默认包里面)

conda install --upgrade --ignore-installed tensorflow==2.1.0 更新包忽略已安装版本

3.输入python进入编译环境,看看包是否安装成功

(注意,报错的话很可能是版本不匹配)

4.删除新环境:conda remove --name xxx --all

总结:

退出 tensflow的tensorflow2.1环境:conda deactivate
激活 tensflow的tensorflow2.1环境:activate tensorflow2.1
删除 tensflow的tensorflow2.1环境:conda remove --name tensorflow2.1 --all

如果想一次性下载所有安装包可以:

在xxx文件下创建一个txt文本文件,里面写上下载包的命令

然后conda install -r xxx.txt   注意路径要写txt文本所在路径
 

最后,如何使用全局包,不重复下载:

创建新项目的时候点击新环境然后勾选下面两个方框即可

或者在这里将false改为true

### 解决Anaconda虚拟环境重复问题的方法 当遇到Anaconda虚拟环境重复的问题时,可以通过以下几个方面进行排查和修复: #### 1. 清理`environments.txt`文件 部分情况下,删除`.conda/environments.txt`文件可能会解决问题。此文件记录了所有已创建虚拟环境路径。如果该文件损坏或存在冗余条目,则可能导致重复显示的现象。 然而,在实际操作中发现,仅删除`C:\Users\<用户名>\.conda\environments.txt`可能无法完全解决问题[^1]。因此建议进一步清理其他潜在缓存数据。 #### 2. 使用`conda clean`命令清除无用文件 执行以下命令可以帮助清理不必要的缓存以及未使用的环境: ```bash conda clean --all ``` 这会移除下载的历史版本、临时构建文件以及其他不再关联到任何活动环境的内容。注意备份重要资料后再运行上述命令以防误删必要组件。 #### 3. 手动检查修正环境列表 利用`conda env list`查看现有全部环境及其对应位置[^2]: ```bash conda env list ``` 对比输出结果与实际磁盘上的`<anaconda安装目录>/envs/`子文件夹内容是否一致。若有不匹配项(即列出却不存在物理文件夹),可通过编辑器打开`~/.condarc`(Linux/MacOS) 或 `%USERPROFILE%\.condarc`(Windows), 删除错误条目实现同步更新。 另外也可以直接通过命令行卸载不需要或者冲突的环境实例: ```bash conda remove --name <problematic_env_name> --all ``` #### 4. 配置正确的Python解释器路径于IDE中 对于开发工具如PyCharm来说, 正确设置项目所依赖的具体Conda Environment至关重要[^3]. 如果之前选择了多个相似命名的空间作为 Interpreter Source , 很容易造成混淆现象 . 应重新指定唯一有效的那个选项. 最后提醒一点就是关于不同操作系统之间可能存在差异化的处理方式; 对应 Linux 和 MacOS 用户而言他们更倾向于采用软连接形式管理多版本共存情况下的切换逻辑 ; 而 Windows 平台则相对固定些 . --- ### 提供一段示例代码用于验证环境状态 以下是检测当前 Conda 环境健康状况的小脚本 : ```python import os import subprocess def check_conda_env(): try: result = subprocess.run(['conda', 'info', '--envs'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) print("Current Conda Envs:") print(result.stdout) active_env = os.environ.get('CONDA_DEFAULT_ENV') if active_env is None or len(active_env.strip()) == 0: raise Exception("No Active Env Found!") print(f"\nActive Environment: {active_env}") except Exception as e: print(f"Error Occurred While Checking Conda Env:{e}") if __name__ == "__main__": check_conda_env() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值