1、安装virtualnev
sudo apt-get install virtualenv
或
pip3 install virtualenv
2、创建自己的虚拟环境
cd ~
# 跳转到指定的安装目录
virtualenv --python=/usr/bin/python3 ./env/env36
# --python: 指定python环境的绝对路径
# ./env/env36: 在当前目录下创建名为env的虚拟环境
# 没有sudo安装virtualenv 的话,需要输入virtualenv的文件目录
3、激活和退出虚拟环境
# 开始使用虚拟环境时,需要被激活
source ./env/env36/bin/activate
# 检查配置
pip3 -V #查看系统 python3 环境
pip3 list # 查看已安装的python包
# 安装python包,numpy为例
pip3 install numpy
# 从清华镜像中下载tensorflow 1.9.0版本
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ tensorflow==1.9.0
# 更新python包,numpy为例
pip3 install --upgrade numpy
# 卸载python包,numpy为例
pip3 uninstall numpy
# 退出
deactivate
4、删除虚拟环境
# 只需删除对应的环境文件夹即可
rm -rf env
5、建立快捷指令调用自己环境中的python
# 把刚刚创建的环境中的python3,建立一个快捷方式到目录/usr/bin/中,需要sudo
sudo ln -s /home/xxx/env/env36/bin/python3 /usr/bin/py3_xxx
# 通过py3_xxx即可调用自己环境中的python3,进入python环境
py3_xxx
6、批量安装
pip3 install -r need_install.txt
need_install.txt中的内容,即要安装的包
numpy
pandas
matplotlib
scipy
sklearn
torch
tensorboard
requests
texttable
networkx
python-igraph
rpy2
seaborn
twilio
beautifulsoup4
7、部分常用安装包指令(自用)
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple/ numpy pandas matplotlib scipy sklearn texttable networkx python-igraph torch rpy2 seaborn twilio beautifulsoup4 pynvml tensorflow
pip3 install numpy
pip3 install pandas
pip3 install matplotlib
pip3 install scipy
pip3 install sklearn
pip3 install texttable
pip3 install networkx
pip3 install rpy2
pip3 install python-igraph
pip3 install torch
pip3 install seaborn
pip3 install twilio
pip3 install beautifulsoup4