SPSS集成学习算法与聚类分析

集成学习算法

概念

构建多个分类器来提高综合效能

尽管每个分类器的性能可能都比较低下,但此算法通俗来讲就是“三个臭皮匠赛过诸葛亮”。类似于“集群”方法,以数量促成质变。最终,将这些分类器进行汇总取得最终的概括算法模型

前提:

基分类器之间相互独立(基分类器的数据来源之间不存在强相关就行,相关性越弱性能改善越好)且错误率要低于0.5

运行的算法都一样为同质集成,不一样就是异质集成(Bagging、Boosting以及随机森林)

bagging和boosting都可以在线性、神经网络、C5.0、C&R树、Quest、CHAID节点中都可以找到

Bagging:

提高模型的稳定性

Boosting:

提高模型的准确性

随机森林:(随机树节点)

极高的准确率和稳定性,不易过拟合
能够有效的运行在大数据集上等等
缺点
当随机森林中的决策树个数很多时,训练需要的空间和时间会较大
随机森林模型有许多不好解释的地方,算个黑盒模型

参考:理解随机森林(RandomForest࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值