110. 平衡二叉树

目录

一、问题描述

二、解题思路

三、代码

四、复杂度分析


一、问题描述

给定一个二叉树,判断它是否是 平衡二叉树  

二、解题思路

✅ 平衡二叉树的定义

一棵二叉树是平衡的,满足以下两个条件:

  1. 左子树是平衡二叉树;

  2. 右子树是平衡二叉树;

  3. 左右子树的高度差的绝对值不超过 1。

🔍 解释一下思路

这个算法的核心是:

  • 用一个辅助函数 checkHeight 来同时判断是否平衡 + 计算高度。

  • 如果某个节点的左右子树高度差超过 1,就立即返回 -1,不再继续递归(剪枝优化)。

  • 如果整棵树都能走完而没有遇到 -1,说明是平衡树。

三、代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */

class Solution {
public:
    bool isBalanced(TreeNode* root) {
        return checkHeight(root) != -1; // 如果返回 -1,说明某处不平衡
    }

private:
    // 返回以 root 为根的子树高度,如果发现不平衡,返回 -1
    int checkHeight(TreeNode* root) {
        if (!root) return 0; // 空树高度为 0

        int leftHeight = checkHeight(root->left);   // 左子树高度
        if (leftHeight == -1) return -1;            // 左子树不平衡,直接返回

        int rightHeight = checkHeight(root->right); // 右子树高度
        if (rightHeight == -1) return -1;           // 右子树不平衡,直接返回

        // 如果当前节点不平衡
        if (abs(leftHeight - rightHeight) > 1) return -1;

        // 返回当前子树的高度
        return max(leftHeight, rightHeight) + 1;
    }
};

四、复杂度分析

🕐 时间复杂度

  • 每个节点只会访问一次,所以时间复杂度是 O(n),其中 n 是节点个数。

🧠 空间复杂度

  • 递归调用的栈深度取决于树的高度,最坏情况是 O(n),最优是 O(log n)(树完全平衡)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值