Educational Codeforces Round 161 (Rated for Div. 2)(A~E)

被教育咯

A - Tricky Template 

        题意:

        思路:读题读了半天..可以发现,若对于第i位而言,c_{i} == a_{i} || b_{i} == c_{i},那么c就一定与模板匹配。否则模板只需要取大写的c_{i}即可。因此若所有的 i,都有c_{i} == a_{i} || b_{i} == c_{i},那么就不能构造,否则一定可以构造出模板。

        

// Problem: A. Tricky Template
// Contest: Codeforces - Educational Codeforces Round 161 (Rated for Div. 2)
// URL: https://codeforces.com/contest/1922/problem/0
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second 
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 1e09+7;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
	return b > 0 ? gcd(b , a % b) : a;
}

LL lcm(LL a , LL b){
	return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
	for(int i = 0 ; i <= n ; i ++){
		a[i] = 0;
	}
}
void solve() 
{
	cin >>n;
	string s[3];
	for(int i = 0 ; i < 3; i ++)
		cin >>s[i];
	int cnt1 = 0 , cnt0 = 0;
	for(int i = 0 ; i < n ; i ++){
		if(s[0][i] != s[2][i] && s[1][i] != s[2][i]){//不匹配
			cout <<"YES\n";
			return;
		}
	}	
	cout <<"NO\n";
}            
int main() 
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cout.precision(10);
    int t=1;
	cin>>t;
    while(t--)
    {
    	solve();
    }
    return 0;
}

B - Forming Triangles 

        题意:

        思路:显然,需要确定拿的策略:一定要拿两根一样长的木棍和一根比他们短的木棍。因此对a数组进行排序,然后模拟一下就行了。

// Problem: B. Forming Triangles
// Contest: Codeforces - Educational Codeforces Round 161 (Rated for Div. 2)
// URL: https://codeforces.com/contest/1922/problem/B
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second 
#define endl '\n'
#define int long long
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 1e09+7;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
	return b > 0 ? gcd(b , a % b) : a;
}

LL lcm(LL a , LL b){
	return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
	for(int i = 0 ; i <= n ; i ++){
		a[i] = 0;
	}
}
int pre[N];
int sum[N];
void solve() 
{
	cin >> n;
	int a[n + 5];
	for(int i = 1 ; i <= n ; i ++){
		cin >> a[i];
	}	
	sort(a + 1, a + 1 + n);
	int cnt = 0;
	int ans = 0;
	for(int i = 1 ; i <= n ; i ++){
		if(i == 1 || a[i] == a[i - 1]){
			cnt ++;
		}
		else{
			cnt = 1;
		}
		ans += sum[i - 1] - sum[i - cnt]; 
	}
	cout << ans << endl;
}            
signed main() 
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cout.precision(10);
    for(int i = 0 ; i < N ; i ++){
    	pre[i] = i - 1;
    }
    for(int i = 1 ; i < N ; i ++){
    	sum[i] = sum[i - 1] + pre[i];
    }
    int t=1;
	cin>>t;
    while(t--)
    {
    	solve();
    }
    return 0;
}

 C - Closest Cities 

        题意:

        思路:可以发现:若要从a走到b,不可能先往远离 b的地方走,然后再跳到b。因此从a走到b的花费其实就是a直接朝着b走的花费,分别预处理一下向右走和向左走的花费即可。

// Problem: C. Closest Cities
// Contest: Codeforces - Educational Codeforces Round 161 (Rated for Div. 2)
// URL: https://codeforces.com/contest/1922/problem/C
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second 
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 1e09+7;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
	return b > 0 ? gcd(b , a % b) : a;
}

LL lcm(LL a , LL b){
	return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
	for(int i = 0 ; i <= n ; i ++){
		a[i] = 0;
	}
}
void solve() 
{
	cin >> n;
	LL a[n + 5];
	a[0] = -llinf;
	a[n + 1] = llinf;
	for	(int i = 1 ; i <= n ; i ++){
		cin >> a[i];
	}
	LL suml[n + 5];
	suml[0] = suml[1] = 0;
	for(int i = 1 ; i <= n ; i ++){
		if(a[i] - a[i - 1] > a[i + 1] - a[i]){
			suml[i + 1] = suml[i] + 1;
		}
		else{
			suml[i + 1] = suml[i] + a[i + 1] - a[i];
		}
	}
	LL sumr[n + 5];
	sumr[n] = 0;
	for(int i = n ; i > 1; i --){
		if(a[i] - a[i - 1] < a[i + 1] - a[i]){
			sumr[i - 1] = sumr[i] + 1;
		}
		else{
			sumr[i - 1] = sumr[i] + a[i] - a[i - 1];
		}		
	}

	int m;
	cin >> m;
	for(int i = 0 ; i < m ; i ++){
		int x , y;
		cin >> x >>y;
		if(x >y){
			cout <<sumr[y] - sumr[x] << endl;
		}
		else{
			cout << suml[y] - suml[x]<<endl;
		}
	}
}            
int main() 
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cout.precision(10);
    int t=1;
	cin>>t;
    while(t--)
    {
    	solve();
    }
    return 0;
}

D - Berserk Monsters  

        题意:

        思路:可以发现:在一轮游戏过后,只有死去的怪物的两边的怪物可能会在下一轮死去。因此每一轮游戏,只需要处理可能会死去的那些怪物即可。(第一轮所有都有可能死去)由于涉及到某只怪兽的左右两只怪兽和删除某只怪兽的操作,因此可以用链表来模拟所有怪兽的情况,这样每次删除的花费都是O(1)的。 每只怪兽最多只会形成两只可能死亡的怪兽,因此整体模拟的复杂度应该是O(N)的。

// Problem: D. Berserk Monsters
// Contest: Codeforces - Educational Codeforces Round 161 (Rated for Div. 2)
// URL: https://codeforces.com/contest/1922/problem/D
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second 
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 1e09+7;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
	return b > 0 ? gcd(b , a % b) : a;
}

LL lcm(LL a , LL b){
	return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
	for(int i = 0 ; i <= n ; i ++){
		a[i] = 0;
	}
}
void solve() 
{
	cin >> n;
	LL a[n + 5] , b[n + 5] , l[n + 5] , r[n + 5];//链表存储
	for(int i = 1 ; i <= n ; i ++){
		cin >> a[i];
	}	
	for(int i = 1 ; i <= n ; i ++){
		cin >> b[i];
	}
	for(int i = 1 ; i <= n ; i ++){
		l[i] = i - 1;
		r[i] = i + 1;
	}
	l[1] = -1 , r[n] = -1;
	vector<int>v;//当前有效的怪兽
	for(int i = 1 ; i <= n ; i ++)
		v.pb(i);
	vector<int>vis(n + 5 , -1);
	for(int i = 0 ; i < n ; i ++){
		vector<int>die;
		for(auto it : v){
			int sum = 0;
			if(l[it] != -1){
				sum += a[l[it]];
			}
			if(r[it] != -1){
				sum += a[r[it]];
			}
			if(sum > b[it]){
				die.pb(it);
			}
		}
		cout << die.size()<<" ";
		v.clear();
		for(auto it : die){
			vis[it] = i;//第几轮死亡的
		}
		for(auto it : die){
			if(l[it] != -1){
				r[l[it]] = r[it];
				if(vis[l[it]] < i){//未死亡且不在v中
					v.pb(l[it]);
					vis[l[it]] = i;//标记在v中
				}
			}
			if(r[it] != -1){
				l[r[it]] = l[it];
				if(vis[r[it]] < i){
					v.pb(r[it]);
					vis[r[it]] = i;
				}
			}
		}
	}
	cout << endl;
}            
int main() 
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cout.precision(10);
    int t=1;
	cin>>t;
    while(t--)
    {
    	solve();
    }
    return 0;
}

E - Increasing Subsequences 

        题意:

        思路:可以发现,在考虑空集的情况下,若在当前已有数组的最后加一个最大值,那么整体的方案数就是原来的两倍,而在已有数组的最后加一个最小值,那么方案数就比原来多1。因此本题变成了从原本的1,通过*2 或者 +1 操作来变成X。同样按照二进制模拟就行。

// Problem: E. Increasing Subsequences
// Contest: Codeforces - Educational Codeforces Round 161 (Rated for Div. 2)
// URL: https://codeforces.com/contest/1922/problem/E
// Memory Limit: 256 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define pb push_back
#define x first
#define y second 
#define endl '\n'
const LL maxn = 4e05+7;
const LL N = 5e05+10;
const LL mod = 1e09+7;
const int inf = 0x3f3f3f3f;
const LL llinf = 5e18;
typedef pair<int,int>pl;
priority_queue<LL , vector<LL>, greater<LL> >mi;//小根堆
priority_queue<LL> ma;//大根堆
LL gcd(LL a, LL b){
	return b > 0 ? gcd(b , a % b) : a;
}

LL lcm(LL a , LL b){
	return a / gcd(a , b) * b;
}
int n , m;
vector<int>a(N , 0);
void init(int n){
	for(int i = 0 ; i <= n ; i ++){
		a[i] = 0;
	}
}

LL k;
void solve() 
{
	cin >> k;
	vector<int>ans;
	int l = 0 , r = 0;
	//末尾添加最大数 -> 方案数 * 2 
	//末尾添加最小数 -> 方案数 + 1
	vector<int>t;
	while(k){
		if(k & 1){
			t.pb(1);
		}
		else{
			t.pb(0);
		}
		k /= 2;
	}
	for(int i = t.size() - 2 ; i >= 0 ; i --){
		if(t[i] == 1){
			ans.pb(++r);
			ans.pb(--l);
		}
		else{
			ans.pb(++r);
		}
	}
	cout << ans.size() << endl;
	for(auto it :ans){
		cout << it <<" ";
	}	
	cout << endl;
}            
int main() 
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    cout.precision(10);
    int t=1;
	cin>>t;
    while(t--)
    {
    	solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值