DAY8字典的简单介绍

字典的简单介绍

字典就是键值对

标签编码

实现映射操作

import pandas as pd
data = pd.read_csv('data.csv')
data
data["Home Ownership"].value_counts()
# 定义映射字典
mapping = {
        "Own Home": 1,
        "Rent": 0,
        "Have Mortgage": 2,
        "Home Mortgage": 3
    
}
data["Home Ownership"] = data["Home Ownership"].map(mapping)
data["Home Ownership"].head()

也可以一个函数实现两个映射

import pandas as pd

# 重新读取数据
data = pd.read_csv("data\data.csv")
# 嵌套映射字典
mapping = {
    "Term": {
        "Short Term": 1,
        "Long Term": 0
    },
    "Home Ownership": {
        "Rent": 0,
        "Own Home": 1,
        "Have Mortgage  ": 2,
        "Home Mortgage": 3
    }
}

连续变量的处理

归一化和标准化,直接sklearn中的归一化和标准化函数。

# 借助sklearn库进行归一化处理

from sklearn.preprocessing import StandardScaler, MinMaxScaler
data = pd.read_csv("data\data.csv")# 重新读取数据


# 归一化处理
min_max_scaler = MinMaxScaler() # 实例化 MinMaxScaler类,之前课上也说了如果采取这种导入函数的方式,不需要申明库名
data['Annual Income'] = min_max_scaler.fit_transform(data[['Annual Income']])

data['Annual Income'].head()
# 标准化处理
data = pd.read_csv("data\data.csv")# 重新读取数据
scaler = StandardScaler() # 实例化 StandardScaler,
data['Annual Income'] = scaler.fit_transform(data[['Annual Income']])
data['Annual Income'].head()

@浙大疏锦行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值