Python实现线性回归可视化及基于matplotlib包的其他操作

这篇博客介绍了如何利用Python的matplotlib库进行数据可视化,包括绘制线性回归图和多条曲线。示例中展示了如何绘制散点图,设置坐标轴范围,并添加拟合线。此外,还展示了如何在同一图表上绘制不同颜色和样式的线条,以及如何添加图例和自定义标签,以增强图表的可读性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 首先通过命令提示符进行matplotlib包的安装

 实现线性回归可视化

import numpy as np
import matplotlib.pyplot as plt
x=[1,2,5,3,5]
y=[1,5,8,10,16]
plt.plot(x,y,"ro")
plt.axis([1,7,1,21])
plt.plot(np.unique(x),np.poly1d(np.polyfit(x,y,1))(np.unique(x)))
plt.show()

 

import matplotlib.pyplot as plt
import numpy as np
a = np.arange(10)
plt.plot(a,a*1.5,'go-',a,a*2.5,'rx',a,a*3.5,'*',a,a*4.5,'b-.')
plt.show()

 

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 1, 101)
y = np.sin(2*np.pi*x)

plt.figure()
plt.plot(x, y, label="$\sin(x)$", c='b')
plt.xlabel('x', fontdict=dict(fontsize=14))
plt.ylabel('y', fontdict=dict(fontsize=14))
plt.legend()
plt.show()

 以上为一些关于matplotlib的其他操作

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值