误差的产生原因:
通俗的解释,一般情况下,误差产是的产生是由于输入值与权重的计算产生了错误,而输入值往往是固定不变的,因此对于误差的调节,需要对权重进行更新。而权重的更新又以输入值与真实值的偏差为基础,当最终层的输出误差被反向一层一层地传递回来后,每个节点都会相应地分配适合其在神经网络中的地位误差,即只需要更新其所需承担的误差量。
反馈神经网络算法
反馈神经网络算法主要需要得到输出值和真实值之间的差值,然后再利用这个差值去对权重进行更新,而这个差值在不同的传递层有着不同的计算方法:
1、对于输出层单元,误差项是真实值与模型计算之间的差值。
2、对于隐藏层的误差项,由于缺少直接的目标值来计算隐藏层单元的误差,因此需要以简洁的方式来计算隐藏层的误差项,并对受隐藏层单元影响的每个单元的误差进行加权求和。
卷积的概念
卷积的作用:能够对输入数据的局部特征进行抽取和计算。
数字图像处理中有一种基本的处理方法,即线性滤波。它将待处理的二维数字看作一个大型矩阵,图像中的每个像素可以看做矩阵中的每个元素,像素的大小就是矩阵中的元素值。
而使用的滤波工具是另一个小型矩阵,这个矩阵被称为卷积核。卷积核的大小远小于图像矩阵,而具体的计算方式就是计算图像大矩阵中的每个像素周围的像素和卷积核对应位置的乘积,之后将结果相加,最终得到的就是该像素的值,这样就完成了一次卷积。
池化
池化的一个非常重要的作用是能够帮助输入的数据表示近似不变形,对于平移不变性,指的是对输入的数据进行少量平移时,经过池化后的输出结果并不会发生改变。局部平移不变性是一个很有用的性质