周志华机器学习笔记-C14

概率图模型

另一种看待机器学习的方法,不是“从样例学习”,而是从概率意义上根据已知变量信息“推断”未知变量出现概率。

机器学习与概率推断

1、概率推断:机器学习重要目的是根据已知(训练样本)对未知(如标记)进行估计和推测,在概率框架下的表达为:利用已知变量推测未知变量分布(后取最概率意义下有可能的取值作为结果)。

2、概率模型:在概率框架下,变量均被理解成彼此具有一定关联、服从一定分布的随机变量。由此,推断目标即未知变量在已知变量下的条件分布,当然,可能还有其他无关变量,一般无法直接求得该条件分布,而必须从建立的概率模型中进一步推断。概率模型有“生成式”(所有变量联合分布)与“判别式”(未知变量在已知变量与无关变量下的分布)

3、概率图模型:以图表示变量相关关系的模型,分为有向图(贝叶斯网)与无向图(马尔科夫网)。

典型概率图模型

1、生成式有向图模型——隐马尔科夫模型HMM:结构如图,讨论状态变量yi(不可观测)观测变量xi取离散值的情况。该模型的结构信息可以表述如下:一个状态仅依赖于前一个状态,与其他任何状态无关。联合分布表达如下。

根据结构信息,需三组参数能描述分布式模型(联合分布):状态转移概率、输出观测概率、初始状态概率。

HMM关注三个问题,目前均能高效求解:给定模型,求解产生特定序列xi的概率;给定模型与产生序列,推断状态序列;调整模型参数使得给定观测序列出现概率最大。

2、生成式无向图模型——马尔科夫随机场MRF:认为多变量之间联合概率能基于(极大)团分解为多因子乘积,该因子又称势函数。其中,团指变量间均有关系的(均相连)的变量集子集,而极大团则是与其他团没有包含关系的团。该随机场有比较便捷的条件独立性,表现为全局马尔可夫性:给定分离集取值,则被分离的两个变量子集条件独立。

联合概率表达如下,其中Z*为规范化因子,使得P能正确定义,不甚重要。而后面的乘积因子即势函数,刻画极大团内变量的关系。它应该给定或由样本确定,如下述表达表示xA与xB偏好相同取值。其定义式常用指数形式。

3、判别式无向图模型——条件随机场CRF:与MRF类似,使用势函数和图结构上的团定义条件概率P(y|x),要求y仅与邻近结点相关,满足如下马尔科夫性,则称为条件随机场。若进一步要求y变量呈链式分布,即链式条件随机场。

选用指数势函数,并将模型归结为仅有的两种团结构(单变量、双变量)的特征函数。特征函数亦由数据或先验决定,如下表示第i观测值为“knock”时,相应标记yi+1、yi很有可能为P与V。

4、话题式模型:一种生成式有向图模型。

学习与推断

即通过概率图模型获得想要的目标条件概率。分为精确推断与近似推断。

1、精确推断:推断问题就是计算如下概率,联合概率能基于概率图快速获取,于是问题在于如何计算边际分布P(xE)。精确推断分为变量消去和信念传播,一般来说大样本计算难度均较高。

2、近似推断:分为两种,一种为采样,典型算法为MCMC马尔科夫链蒙特卡洛,其思想为直接计算所要求的随机变量函数而非其分布(如均值),通过先构造一条马尔科夫链,然后通过此产生复合后延分布的样本,再基于样本估计;另一种为变分推断。

本章主要介绍了概率图模型的基本概念和常见类型,以及如何利用Python实现这些模型。下面是一些笔记和代码示例。 ## 概率图模型的基本概念 概率图模型是一种用于表示和处理不确定性的图形化模型,它能够将一个复杂的联合概率分布表示为多个简单的条件概率分布的乘积形式,从而简化概率推理和模型学习的过程。概率图模型主要包括两种类型:有向图模型和无向图模型。 有向图模型(Directed Acyclic Graph, DAG)又称为贝叶斯网络(Bayesian Network, BN),它用有向边表示变量之间的因果关系,每个节点表示一个随机变量,给定父节点的条件下,每个节点的取值都可以用一个条件概率分布来描述。有向图模型可以用贝叶斯公式进行概率推理和参数学习。 无向图模型(Undirected Graphical Model, UGM)又称为马尔可夫随机场(Markov Random Field, MRF),它用无向边表示变量之间的相互作用关系,每个节点表示一个随机变量,给定邻居节点的取值,每个节点的取值都可以用一个势函数(Potential Function)来描述。无向图模型可以用和有向图模型类似的方法进行概率推理和参数学习。 ## 概率图模型的Python实现 在Python中,我们可以使用`pgmpy`库来实现概率图模型。该库提供了一个简单而强大的接口来定义和操作概率图模型,支持有向图模型和无向图模型的构建、概率推理、参数学习等功能。 ### 有向图模型 以下是一个简单的有向图模型的示例: ```python from pgmpy.models import BayesianModel model = BayesianModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其中,`BayesianModel`是有向图模型的类,`('A', 'B')`表示A节点指向B节点,即B节点是A节点的子节点,依此类推。我们可以使用以下代码查看模型的结构: ```python print(model.edges()) # 输出:[('A', 'B'), ('B', 'D'), ('C', 'B')] ``` 接下来,我们可以为每个节点定义条件概率分布。以下是一个简单的例子: ```python from pgmpy.factors.discrete import TabularCPD cpd_a = TabularCPD(variable='A', variable_card=2, values=[[0.2, 0.8]]) cpd_c = TabularCPD(variable='C', variable_card=2, values=[[0.4, 0.6]]) cpd_b = TabularCPD(variable='B', variable_card=2, values=[[0.1, 0.9, 0.3, 0.7], [0.9, 0.1, 0.7, 0.3]], evidence=['A', 'C'], evidence_card=[2, 2]) cpd_d = TabularCPD(variable='D', variable_card=2, values=[[0.9, 0.1], [0.1, 0.9]], evidence=['B'], evidence_card=[2]) model.add_cpds(cpd_a, cpd_c, cpd_b, cpd_d) ``` 其中,`TabularCPD`是条件概率分布的类,`variable`表示当前节点的变量名,`variable_card`表示当前节点的取值个数,`values`表示条件概率分布的值。对于有父节点的节点,需要指定`evidence`和`evidence_card`参数,表示当前节点的父节点和父节点的取值个数。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import VariableElimination infer = VariableElimination(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其中,`VariableElimination`是概率推理的类,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ### 无向图模型 以下是一个简单的无向图模型的示例: ```python from pgmpy.models import MarkovModel model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) ``` 其中,`MarkovModel`是无向图模型的类,与有向图模型类似,`('A', 'B')`表示A节点和B节点之间有相互作用关系。 接下来,我们可以为每个节点定义势函数。以下是一个简单的例子: ```python from pgmpy.factors.discrete import DiscreteFactor phi_a = DiscreteFactor(['A'], [2], [0.2, 0.8]) phi_c = DiscreteFactor(['C'], [2], [0.4, 0.6]) phi_b = DiscreteFactor(['A', 'C', 'B'], [2, 2, 2], [0.1, 0.9, 0.3, 0.7, 0.9, 0.1, 0.7, 0.3]) phi_d = DiscreteFactor(['B', 'D'], [2, 2], [0.9, 0.1, 0.1, 0.9]) model.add_factors(phi_a, phi_c, phi_b, phi_d) ``` 其中,`DiscreteFactor`是势函数的类,与条件概率分布类似,需要指定变量名、变量取值个数和势函数的值。 接下来,我们可以使用以下代码进行概率推理: ```python from pgmpy.inference import BeliefPropagation infer = BeliefPropagation(model) print(infer.query(['D'], evidence={'A': 1})) # 输出:+-----+----------+ # | D | phi(D) | # +=====+==========+ # | D_0 | 0.6000 | # +-----+----------+ # | D_1 | 0.4000 | # +-----+----------+ ``` 其中,`BeliefPropagation`是概率推理的类,与有向图模型类似,`query`方法用于查询给定变量的概率分布,`evidence`参数用于指定给定变量的取值。 ## 总结 本章介绍了概率图模型的基本概念和Python实现,包括有向图模型和无向图模型的构建、条件概率分布和势函数的定义、概率推理等。使用`pgmpy`库可以方便地实现概率图模型,对于概率模型的学习和应用都有很大的帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值