周志华机器学习笔记-C12

计算学习理论

从概率角度给出算法复杂度、误差限、稳定性的理论。

PAC学习

1、计算学习理论:关于机器学习的理论基础,旨在分析学习任务的困难程度,为学习算法提供理论保证并指导算法设计。本章主要讨论二分问题。样例集被描述为某分布下的重复独立取样。泛化误差被描述为采用某种分类算法时,样本空间标签与真实标签不一致的概率。经验误差即限制在样例集上的频数。

2、常用概率不等式:包括Jensen、Hoeffding、McDiarmid:

3、概率近似正确PAC学习:“目标概念”:即完全正确分类的分类算法;“假设”:学习算法认为的可能正确分类算法,其集合称假设空间。若假设空间包含目标概念,可将示例完全正确分开,称为该问题对学习算法可分;反之若不包含,则不可分。由于示例有限,可能会产生若干等效假设而学习算法无法区分。

不强求假设一定能得到目标概念,而是作概率意义上的“辨识”(PAC辨识),即学习算法以较大概率(1-δ)学得目标概念的近似(误差小于ε),即下式。

于是问题归结为如何获得这个合理的假设,从假设空间排除的话困难程度多大,并且如何评估从经验误差估计泛化误差的准确性。

PAC可学习:对目标概念而言,若存在学习算法,使得对任何样本数大于某一关于误差倒数、置信度倒数、数据本身复杂度、目标概念复杂度的多项式函数的样本集,总能从假设空间中辨识出目标概念。则称该目标概念是PAC可学习的。学习算法样本复杂度定义为满足PAC学习算法所需的最小样本数。

这里需要特别关心假设空间复杂度,若假设空间越大,理论上讲它包含目标概念的可能越大,但筛选难度也倍增。

假设空间复杂度与泛化误差限

本节针对不同假设空间对其复杂度和泛化误差限进行估计。

1、有限假设空间:有限假设空间都是PAC可学习的,所需样本数如下。泛化误差随样例数目增多而收敛到0。

在概率意义上,经验误差估计泛化误差在样例数目较大时是较好的近似。

2、无限假设空间的复杂度(VC维):示例集被假设空间打散:即假设空间能对示例集做完全的划分,共2m种可能。假设空间的VC维就是能被假设空间打散的最大示例集大小(只要求存在一个)。如:二维实平面线性划分,假设空间是R2的,但是其VC维为3,原因是大于4个的样例集总存在一中情形无法线性划分。

无限假设空间基于经验误差的泛化误差限,直接与VC维相关:

3、Radmacher复杂度:基于VC维的假设空间复杂度与泛化误差限估计没有考虑到数据分布,Radmacher复杂度一定程度上考虑。

稳定性理论

虽然Radmacher复杂度在VC维导出法泛化误差考虑了数据分布,但是两者均与学习算法无关。希望获得与算法有关的分析结果,稳定性分析是值得关注的一个方向。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值