蛮力算法求最大连续子序列的和并列出组成项

给定一个有n(n≥1)个整数的序列,求出其中最大连续子序列的和并列出组成项。

例如序列(-2,11,-4,13,-5,-2     )的最大连续子序列和为20,

序列(-6,2,4,-7,,5,3,2,-1,6,-9,10,-2)的最大子序列和为16,规

定一个序列的最大连续子序列和至少是0,如果小于0,如果小于0,其结果为0.

#include <iostream>
using namespace std;

int maxSubSum1(int a[], int n)
{
    int i, j, k;
    int maxSum = 0, thisSum;

    for (i = 0; i < n; i++)
    {
        for (j = i; j < n; j++)
        {
            thisSum = 0;
            for (k = i; k <= j; k++)
                thisSum += a[k];
            if (thisSum > maxSum)
                maxSum = thisSum;
        }
    }
    return maxSum;
}

int main()
{
    int n;
    cout << "Enter the size of the array: ";
    cin >> n;

    int arr[n];
    cout << "Enter the elements of the array:\n";
    for (int i = 0; i < n; i++)
    {
        cin >> arr[i];
    }

    int maxSum = maxSubSum1(arr, n);
    cout << "Maximum subarray sum: " << maxSum << endl;

    return 0;
}

该函数使用了三重循环,时间复杂度为O(n^3)。

该算法的缺点是时间复杂度较高,当数组规模较大时,性能较差。可以考虑使用更有效的算法进行优化,例如动态规划算法或分治算法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值