二叉树
1.基本介绍
1.1概念
一棵二叉树(非线性数据结构)是结点的一个有限集合,该集合:
- 或者为空
- 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
如图:
注意: - 二叉树不存在度大于2的结点(一个结点含有子树的个数称为该结点的度)
- 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
- 树的其他情况:
2.2 两种特殊的二叉树
- 满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵
二叉树的层数为K,且结点总数是 ,则它就是满二叉树。 - 完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
2.3 二叉树的性质
- 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 (i>0)个结点
- 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是 (k>=0)
- 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
- 具有n个结点的完全二叉树的深度k为 上取整
- 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i
的结点有:
若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
若2i+1<n,左孩子序号:2i+1,否则无左孩子
若2i+2<n,右孩子序号:2i+2,否则无右孩子
2.4 二叉树的存储
二叉树的存储结构分为:顺序存储和类似于链表的链式存储。
实现如下:
// 孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点
}
2.5 二叉树的基本操作
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
/**
* @author zq
* 二叉树
*/
public class TestBinaryTree {
static class TreeNode{
//孩子表示法
public char val;
public TreeNode left;
public TreeNode right;
//只有节点值的构造方法
public TreeNode(char val){
this.val = val;
}
}
// public TreeNode root;//二叉树的根节点
public TreeNode creatTree(){
TreeNode A = new TreeNode('A');
TreeNode B = new TreeNode('B');
TreeNode C = new TreeNode('C');
TreeNode D = new TreeNode('D');
TreeNode E = new TreeNode('E');
TreeNode F = new TreeNode('F');
TreeNode G = new TreeNode('G');
TreeNode H = new TreeNode('H');
A.left = B;
A.right = C;
B.left = D;
B.right = E;
C.left = F;
C.right = G;
E.right = H;
//引用
//this.root = A;
//拿到根节点就能拿到树
return A;
}
//前序遍历 根、左子树、右子树、递归
public void preOrder(TreeNode root){
if (root == null){
return;
}
System.out.print(root.val);
//移动根节点的位置,继续打印
preOrder(root.left);
//左边全部打印完毕,root == null
// return;
// 移动根节点位置打印右边
preOrder(root.right);
}
//中序遍历,左子树,根,右子树
public void inOrder(TreeNode root){
if (root == null){
return;
}
inOrder(root.left);
System.out.print(root.val+"");
inOrder(root.right);
}
//后序遍历
public void posOrder(TreeNode root){
if (root == null){
return;
}
posOrder(root.left);
posOrder(root.right);
System.out.print(root.val + "");
}
// 获取树中节点的个数,
// 子问题:左树节点+右树节点+1
// 时间复杂度O(N),空间复杂度O(logN)
// public int size(TreeNode root) {
// if (root == null){
// return 0;
// }
// int leftCount = size(root.left);
//
// int rightCount = size(root.right);
// return leftCount + rightCount +1;
// }
//遍历思路
int count = 0;
public int size(TreeNode root) {
if (root == null){
return count;
}
count++;
size(root.left);
size(root.right);
return count;
}
//求叶子节点个数
//遍历
// int count1 =0;
// public int getLeafNodeCount(TreeNode root){
// if (root == null){
// return 0;
// }
// if (root.right==null && root.left==null){
// count1++;
// }
// getLeafNodeCount(root.left);
// getLeafNodeCount(root.right);
// return count1;
// }
//子问题思路
public int getLeafNodeCount(TreeNode root){
if (root == null){
return 0;
}
if (root.right==null && root.left==null){
//遇到了就返回1,每个子节点都相当于一个子树,
// 遍历左边有,就返回1,结束,然后遍历右边有,结束,返回1,
// 然后返回左边加右边,
return 1;
}
int leftcount = getLeafNodeCount(root.left);
int rightcount = getLeafNodeCount(root.right);
return rightcount +leftcount ;
}
//求第K层节点个数
//子问题思路,
// 求第k层节点个数相当于求第k-1层节点个数
public int getKLevelNodeCount(TreeNode root,int k){
if (root == null){
return 0;
}
if (k==1){
return 1;
}
int leftcount = getKLevelNodeCount(root.left,k-1);
int rightcount = getKLevelNodeCount(root.right,k-1);
return rightcount +leftcount ;
}
//求树的高度
//子问题思路,求每一个子树max(左子树/右子树)高度,一个子节点高度为0/1
public int getHight(TreeNode root){
if (root == null){
return 0;
}
//递归求子树高度
int leftHight = getHight(root.left);
int righHight = getHight(root.right);
//当为空时,返回0,但实际高度为1,则加1
return Math.max(leftHight+1,righHight+1) ;
}
//二叉树的最大深度
//时间复杂度 O(n) 空间复杂度:O(树的高度)
public int maxDepth(TreeNode root) {
if(root == null) {
return 0;
}
int leftHeight = maxDepth(root.left);
int rightHeight = maxDepth(root.right);
return (leftHeight > rightHeight) ?
(leftHeight+1):(rightHeight+1);
}
//检测值为value的元素是否存在,返回地址
TreeNode find(TreeNode root, int val) {
if(root == null) {
return null;
}
if(root.val == val) {
return root;
}
//leftTree代表整个左边,为空时结束此行代码(递归),进行右边
TreeNode leftTree = find(root.left,val);
//判断最后左边是否有返回值
if(leftTree != null) {
return leftTree;
}
//代表整个右边
TreeNode rightTree = find(root.right,val);
if(rightTree != null) {
return rightTree;
}
return null;//没有找到
}
}