18.最长递增子序列

题目:

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

提示:

  • 1 <= nums.length <= 2500
  • -104 <= nums[i] <= 104

思路一:动态规划 

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        if(nums.size()==0)return 0;
        vector<int>dp(nums.size(),1);//每个数自己可组成的最长子序列为1
		for (int i = 0; i < nums.size(); i++){
			for (int j = 0; j < i; j++){
				if (nums[i]>nums[j]){//当i所指数字可以接在j所指数字后面的时候
					dp[i] = max(dp[i], dp[j] + 1);//长度就可以+1
				}
            } 
        }
        int ans=0;
        for(auto x:dp)ans=max(ans,x);
        return  ans;
    }
};

先设置dp数组都为1,因为每个数字自身所能组成的最长子序列为1

双指针循环比较,当nums[i]>nums[j]的时候,就可以更新dp数组

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值