题打眼一看至少O(n^2),如果直接在双重循环中处理,可达到O(n^3),所以还是空间换时间,申请两个数组,分别用来存储为零的横纵坐标,将双重循环中找到的下标存储起来,再用一个双重循环将其对应的横纵全部置零。
我采用的是,将找到的下标也作为新申请数组的下标,将其值置为1,初始化时初始为其他值,这样在遍历时,直接用下标即可。上代码。
class Solution {
public:
void setZeroes(vector<vector<int>>& matrix) {//因为在原地变,所以传引用
int row=matrix.size();
int column=matrix[0].size();
vector<int> r(row),c(column);//记录行列坐标
fill_n(back_inserter(r), row, -1);//初值为-1
fill_n(back_inserter(c), column, -1);//初值为-1
for(int i=0;i<row;i++)
{
for(int j=0;j<column;j++)
{
if(matrix[i][j]==0)
{
r[i]=c[j]=1;//对应位置置1
}
}
}
for(int i=0;i<row;i++)
{
for(int j=0;j<column;j++)
{
if(r[i]==1||c[j]==1)//不论行列只要存在即可
{
matrix[i][j]=0;
}
}
}
}
};
我本来用了一个数组存储,用下标作为行,值作为列,在vs上可以运行,在力扣上却出现字符对其的问题,代码先放到这里,还没找到解决方法,有大佬看出来的话,可以指导指导。
//这是最初版,在力扣上不能运行,VS可以得出正确结果
class Solution {
public:
void setZeroes(vector<vector<int>>& matrix) {//因为在原地变,所以传引用
int row = matrix.size();
int column = matrix[0].size();
vector<int> v;//记录为0的下标,下标代表row,值代表column
fill_n(back_inserter(v), row, -1);//初值为-1
for (int i = 0; i < row; i++)
{
for (int j = 0; j < column; j++)
{
if (matrix[i][j] == 0)
{
v[i] = j;
}
}
}
for (int i = 0; i < v.size(); i++)
{
if (v[i] != -1)//有0
{
for (int j = 0; j < column; j++)
{
matrix[i][j] = 0;//一整行为0
matrix[j][i] = 0;//一整列为0
}
}
}
}
};
再优化的话,就只能优化空间了,哈哈,看题解,先看了第三种方法,算了,什么鬼,看不懂极致的优化,还是看第二种,直接在原数组的基础上,将第0行和第0列拿出来标记,本身的数据,用两个变量来保存,空间复杂度就可达到O(1)。我画了一张图,来表述这个代码的过程,更直观。
代码还是给大家拿来。
class Solution {
public:
void setZeroes(vector<vector<int>>& matrix) {
int m = matrix.size();
int n = matrix[0].size();
int flag_col0 = false, flag_row0 = false;
for (int i = 0; i < m; i++) {
if (!matrix[i][0]) {
flag_col0 = true;
}
}
for (int j = 0; j < n; j++) {
if (!matrix[0][j]) {
flag_row0 = true;
}
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (!matrix[i][j]) {
matrix[i][0] = matrix[0][j] = 0;
}
}
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (!matrix[i][0] || !matrix[0][j]) {
matrix[i][j] = 0;
}
}
}
if (flag_col0) {
for (int i = 0; i < m; i++) {
matrix[i][0] = 0;
}
}
if (flag_row0) {
for (int j = 0; j < n; j++) {
matrix[0][j] = 0;
}
}
}
};
作者:力扣官方题解
链接:https://leetcode.cn/problems/set-matrix-zeroes/submissions/550186708/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
还要注意,第一步行列的标记,不能在一个循环里实现,因为行列可能不同(因为我犯了这样的错误),感觉代码会有些长,如果没有太大要求,第一种方法还是可以的。
待我找找我的最初代码到底是哪里的问题,也不可能越界啊。。