整数二分
分巧克力
儿童节那天有 KK 位小朋友到小明家做客。
小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 NN 块巧克力,其中第 ii 块是 Hi×WiHi×Wi 的方格组成的长方形。
为了公平起见,小明需要从这 NN 块巧克力中切出 KK 块巧克力分给小朋友们。
切出的巧克力需要满足:
- 形状是正方形,边长是整数
- 大小相同
例如一块 6×56×5 的巧克力可以切出 66 块 2×22×2 的巧克力或者 22 块 3×33×3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入格式
第一行包含两个整数 NN 和 KK。
以下 NN 行每行包含两个整数 HiHi 和 WiWi。
输入保证每位小朋友至少能获得一块 1×11×1 的巧克力。
输出格式
输出切出的正方形巧克力最大可能的边长。
数据范围
1≤N,K≤1051≤N,K≤105,
1≤Hi,Wi≤1051≤Hi,Wi≤105
输入样例:
2 10
6 5
5 6
输出样例:
2
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,k;
const int N = 1e5+10;
int h[N],w[N];
bool check(int x)
{
int res=0;
for(int i=1;i<=n;i++)
{
res+=(h[i]/x)*(w[i]/x);
}
if(res>=k) return true;
else return false;
}
int main()
{
cin>>n>>k;
for(int i=1;i<=n;i++)
cin>>h[i]>>w[i];
int l=0,r=1e5;
while(l<r)
{
int mid=l+r+1>>1;
if(check(mid)) l=mid;
else r=mid-1;
}
cout<<r;
return 0;
}
小数二分
如果题目要求保留k位小数,二分到 r - l < 10 ^ ( k + 2 )
例题
剪绳子
有 NN 根绳子,第 ii 根绳子长度为 LiLi,现在需要 MM 根等长的绳子,你可以对 NN 根绳子进行任意裁剪(不能拼接),请你帮忙计算出这 MM 根绳子最长的长度是多少。
输入格式
第一行包含 22 个正整数 N、MN、M,表示原始绳子的数量和需求绳子的数量。
第二行包含 NN 个整数,其中第 ii 个整数 LiLi 表示第 ii 根绳子的长度。
输出格式
输出一个数字,表示裁剪后最长的长度,保留两位小数。
数据范围
1≤N,M≤1000001≤N,M≤100000,
0<Li<1090<Li<109
输入样例:
3 4
3 5 4
输出样例:
2.50
样例解释
第一根和第三根分别裁剪出一根 2.502.50 长度的绳子,第二根剪成 22 根 2.502.50 长度的绳子,刚好 44 根。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m,w[100100];
bool check(double l,double r)
{
double mid=(l+r)/2;
int cnt=0;
for(int i=1;i<=n;i++)
{
cnt+=(w[i]/mid);
}
return cnt>=m;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>w[i];
double l=0,r=1e9;
while(r-l>=0.0001)
{
if(check(l,r)) l=(l+r)/2;
else r=(l+r)/2;
}
printf("%.2lf",r);
return 0;
}