话说大诗人李白,一生好饮。幸好他从不开车。一天,他提着酒壶,从家里出来,酒壶中有酒 2斗。他边走边唱:
无事街上走,提壶去打酒。
逢店加一倍,遇花喝一斗。
这一路上,他一共遇到店 N次,遇到花 M次。已知最后一次遇到的是花,他正好把酒喝光了。请你计算李白这一路遇到店和花的顺序,有多少种不同的可能?
注意:壶里没酒 (0斗) 时遇店是合法的,加倍后还是没酒;但是没酒时遇花是不合法的。
输入格式
第一行包含两个整数 N和 M。
输出格式
输出一个整数表示答案。由于答案可能很大,输出模 1000000007的结果。
数据范围
对于 40%的评测用例:1≤N,M≤10。
对于 100% 的评测用例:1≤N,M≤100。
输入样例:
5 10
输出样例:
14
样例解释
如果我们用 0代表遇到花,1 代表遇到店,14种顺序如下:
010101101000000
010110010010000
011000110010000
100010110010000
011001000110000
100011000110000
100100010110000
010110100000100
011001001000100
100011001000100
100100011000100
011010000010100
100100100010100
101000001010100
法一:
四维数组,i,j,k,c
时间复杂度:n*m*k*c=100*100*k*2;酒最多有102斗,约为2*1e6
ac代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m;
int f[110][110][110][2];
const int M = 1000000007;
int main()
{
cin>>n>>m;
f[0][0][2][1]=1;
for(int i=0;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
for(int k=0;k<=101;k++)
{
for(int c=0;c<2;c++)
{
if(i > 0 && c == 1 && k % 2 == 0)
{
f[i][j][k][c] = (f[i - 1][j][k /2][0] + f[i - 1][j][k /2][1]) % M;
}
if(j > 0 && c == 0 && k >= 0)
{
f[i][j][k][c] = (f[i][j - 1][k+1][0] + f[i][j - 1][k +1][1]) % M;
}
}
}
}
}
cout<<f[n][m][0][0];
return 0;
}
法二
三维
同上,减少了关于c的循环
注意:
此时答案为f[n][m-1][1],即还剩一次花未经过,还剩一斗酒
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m;
int f[110][110][110];
const int N = 1000000007 ;
int main()
{
cin>>n>>m;
f[0][0][2]=1;
for(int i=0;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
for(int k=0;k<=102;k++)
{
if(i>0&&k%2==0)
f[i][j][k]=(f[i][j][k]+f[i-1][j][k/2])%N;
if(j>0)
f[i][j][k]=(f[i][j][k]+f[i][j-1][k+1])%N;
}
}
}
cout<<f[n][m-1][1];
return 0;
}