李白打酒加强版(dp)

这篇博客探讨了一个数学问题,涉及大诗人李白在路上遇到店和花的顺序,其中每次遇到店酒量翻倍,遇到花则喝掉一斗。题目要求计算在特定条件下所有可能的合法顺序,并给出了两种不同的解决方案。第一种使用四维数组,第二种通过减少循环维度优化。博主提供了AC代码来展示这两种方法。
摘要由CSDN通过智能技术生成

话说大诗人李白,一生好饮。幸好他从不开车。一天,他提着酒壶,从家里出来,酒壶中有酒 2斗。他边走边唱:

无事街上走,提壶去打酒。

逢店加一倍,遇花喝一斗。

这一路上,他一共遇到店 N次,遇到花 M次。已知最后一次遇到的是花,他正好把酒喝光了。请你计算李白这一路遇到店和花的顺序,有多少种不同的可能?

注意:壶里没酒 (0斗) 时遇店是合法的,加倍后还是没酒;但是没酒时遇花是不合法的。

输入格式

第一行包含两个整数 N和 M。

输出格式

输出一个整数表示答案。由于答案可能很大,输出模 1000000007的结果。

数据范围

对于 40%的评测用例:1≤N,M≤10。
对于 100% 的评测用例:1≤N,M≤100。

输入样例:

5 10

输出样例:

14

样例解释

如果我们用 0代表遇到花,1 代表遇到店,14种顺序如下:

010101101000000
010110010010000
011000110010000
100010110010000
011001000110000
100011000110000
100100010110000
010110100000100
011001001000100
100011001000100
100100011000100
011010000010100
100100100010100
101000001010100

 法一:

四维数组,i,j,k,c
时间复杂度:n*m*k*c=100*100*k*2;酒最多有102斗,约为2*1e6

 ac代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
int n,m;
int f[110][110][110][2];
const int M = 1000000007;

int main()
{
    cin>>n>>m;
    f[0][0][2][1]=1;
    for(int i=0;i<=n;i++)
    {
        for(int j=0;j<=m;j++)
        {
            for(int k=0;k<=101;k++)
            {
                for(int c=0;c<2;c++)
                {
                    if(i > 0 && c == 1 && k % 2 == 0)
                    {
                        f[i][j][k][c] = (f[i - 1][j][k /2][0] + f[i - 1][j][k /2][1]) % M;
                    }
                    
                    if(j > 0  && c == 0 && k >= 0)
                    {
                        f[i][j][k][c] = (f[i][j - 1][k+1][0] + f[i][j - 1][k +1][1]) % M;
                    }
                }
            }
        }
    }
    
    cout<<f[n][m][0][0];
    return 0;
}

 法二

三维
同上,减少了关于c的循环

注意:
此时答案为f[n][m-1][1],即还剩一次花未经过,还剩一斗酒

 

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

int n,m;
int f[110][110][110];
const int N = 1000000007 ;
int main()
{
    cin>>n>>m;
    
    f[0][0][2]=1;
    for(int i=0;i<=n;i++)
    {
        for(int j=0;j<=m;j++)
        {
            for(int k=0;k<=102;k++)
            {
                if(i>0&&k%2==0)
                f[i][j][k]=(f[i][j][k]+f[i-1][j][k/2])%N;
                if(j>0)
                f[i][j][k]=(f[i][j][k]+f[i][j-1][k+1])%N;
            }
        }
    }
    
    cout<<f[n][m-1][1];
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黑夜蔓蔓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值