题目描述
蛇形矩阵,是由1开始的自然数一次排列成的N*N的正方形矩阵,数字依次由外而内的递增。如 N=3时蛇形矩阵为:
1 2 3
8 9 4
7 6 5
N=6时蛇形矩阵为:
1 2 3 4 5 6
20 21 22 23 24 7
19 32 33 34 25 8
18 31 36 35 26 9
17 30 29 28 27 10
16 15 14 13 12 11
输入蛇形矩阵宽度,动态分配二维数组,设置蛇形矩阵并输出结果。
输入
测试次数t
每组测试数据一行:数组大小N(>0)
输出
对每组测试数据,输出计算得到的蛇形矩阵。每行元素间以空格分隔,最后一个元素后无空格。
每组测试数据之间以空行分隔。
输入样例1
3
3
6
2
输出样例1
1 2 3
8 9 4
7 6 5
1 2 3 4 5 6
20 21 22 23 24 7
19 32 33 34 25 8
18 31 36 35 26 9
17 30 29 28 27 10
16 15 14 13 12 11
1 2
4 3
碎碎念念
就对于初学者而言,这是一道难题。
我们先抛开算法。就知识点而言,你得会动态分配二维数组并知道而且要记得释放内存。
动态分配二维数组的方法:先分配一个二级指针的数组,然后对这个指针数组的每一个元素都分配一个数组内存,具体看下面的代码。
好,我们来看怎么解决这道题。
以人的视角去看,就是从外圈到内圈填数,从1填到n*n。
其实就是a[i][j]=num++;
然后难度就是怎么确定i和j的变化。
在这里,我们仍然采用两层循环的方式,外循环是圈数的变化,内循环实现每一圈的填数。
以人的视角去看,填数是先右再下再左再上的循环方式,所以我们需要四个循环,分别来完成上下左右的绕圈。
实际上在写代码时,外循环的i是半圈数,每一个半圈走两个方向。
下面的代码在i是偶数的时候填的是上三角,i是奇数的时候填的是下三角。
代码
#include<iostream>
using namespace std;
int main()
{
int t,n,i,j;
cin>>t;
while(t--)
{
cin>>n;
int **p=new int*[n],num=1,N=n;
for(i=0;i<n;i++)
p[i]=new int[n];
for(i=0;i<N;i++)
{
if(i%2==0)
{
for(j=i/2;j<n-1;j++)
p[i/2][j]=num++;
for(j=i/2;j<n;j++)
p[j][n-1]=num++;
n--;
}
else
{
for(j=N-(i+1)/2-1;j>(i+1)/2-1;j--)
p[N-(i+1)/2][j]=num++;
for(j=N-(i+1)/2;j>(i+1)/2-1;j--)
p[j][(i+1)/2-1]=num++;
}
}
for(i=0;i<N;i++)
{
for(j=0;j<N-1;j++)
cout<<p[i][j]<<' ';
cout<<p[i][j]<<endl;
}
cout<<endl;
for(i=0;i<N;i++)
delete[] p[i];
delete[] p;
}
}
后来又想到了一种更加简单的方法 :
#include<iostream>
using namespace std;
int main()
{
int t,n,i,j,up,down,left,right;
cin>>t;
while(t--)
{
cin>>n;
up=left=0;
down=right=n-1;
int **p=new int*[n],num=1;
for(i=0;i<n;i++)
p[i]=new int[n];
while(down>up&&right>left)
{
for(i=left;i<right;i++)
p[up][i]=num++;
for(i=up;i<down;i++)
p[i][right]=num++;
for(i=right;i>left;i--)
p[down][i]=num++;
for(i=down;i>up;i--)
p[i][left]=num++;
up++;
down--;
left++;
right--;
}
if(n%2!=0)
p[n/2][n/2]=n*n;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
cout<<p[i][j];
if(j==n-1)
cout<<endl;
else
cout<<' ';
}
for(i=0;i<n;i++)
delete[] p[i];
delete[] p;
}
}