目录
算法思想
希尔排序又称缩小增量排序,他的本质还是插入排序,只不过是把待排序列按照一定的增量,分成若干个子序列,然后对这个子序列进行插入排序,那这个增量应该如何选取呢?(๑•̌.•̑๑)ˀ̣ˀ̣增量的选取实际上是具有任意性的,但是我们通常把待排序列的长度的一半,作为第一次排序的增量,对各个子序列,插排完成后,便需要重新划分增量,此时的增量是上一次的一半,现在又对各个子序列进行插排,然后重新划分增量为上一次的一半~~直到增量为1
算法过程演示
我们把每一个数组元素看成一个人的身高,对数组进行从小到大排序,便是把下面八个人(从左往右依次从0到8进行编号)按照身高从低到高进行排序.
现在有九个人,按照开始所说,我们的增量便是9/2=4,那这个增量为4是如何对数组进行划分的呢?(๑•̌.•̑๑)ˀ̣ˀ̣就是把0和4和8,1和5,2和6,3和7分别做为一组,然后对组内进行插入排序
分组结果如下:
组内排序后结果如下:
排好序后重新划分增量为4/2=2,即0,2,4,6,8为一组,1,3,5,7为一组,结果如下图所示:
组内排序结果,如下图所示:
排好序后重新划分增量为2/2=1,就是全部人划分为一个大组,然后进行插入排序,所得结果如下图所示:
流程汇总:
代码部分
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
int len, i, j, n, a[10005];
cin >> len;
n = len;
for (i = 0; i < len; i++) cin >> a[i];
while (len / 2)
{
len /= 2; //设置增量
for (i = 0; i < n - 1; i++)
{
for (j = i + len; j < n; j += len)
{
int temp1=j-len,temp2=j;
while(temp1>=0&&a[temp2]<a[temp1])
{
swap(a[temp1],a[temp2]);
temp2=temp1;
temp1-=len;
}
}
}
}
for (i = 0; i < n; i++) cout << a[i] << ' ';
return 0;
}
运行结果:
为什么不直接用插入排序
这个嘛,博主也不好讲,各位可以想一个极端的情况,如果有1000个待排序的降序序列,而我们需要把排成升序的序列,用插入排序排完则需要交换数据(1+999)*999/2次,而使用希尔排序~(留个思考,嘻嘻!) 为了给大家一个直观的感受,下面给各位看一组别人曾经统计过的数据~
总结
博主创作不易,🥂(❁´◡`❁)您的点赞➕评论➕收藏⭐是作者创作的最大动力🤞