九大排序算法之希尔排序(原理及实现)

目录

算法思想

算法过程演示

 代码部分

为什么不直接用插入排序

总结


算法思想

希尔排序又称缩小增量排序,他的本质还是插入排序,只不过是把待排序列按照一定的增量,分成若干个子序列,然后对这个子序列进行插入排序,那这个增量应该如何选取呢?(๑•̌.•̑๑)ˀ̣ˀ̣增量的选取实际上是具有任意性的,但是我们通常把待排序列的长度的一半,作为第一次排序的增量,对各个子序列,插排完成后,便需要重新划分增量,此时的增量是上一次的一半,现在又对各个子序列进行插排,然后重新划分增量为上一次的一半~~直到增量为1

算法过程演示

我们把每一个数组元素看成一个人的身高,对数组进行从小到大排序,便是把下面八个人(从左往右依次从0到8进行编号)按照身高从低到高进行排序.

 现在有九个人,按照开始所说,我们的增量便是9/2=4,那这个增量为4是如何对数组进行划分的呢?(๑•̌.•̑๑)ˀ̣ˀ̣就是把0和4和8,1和5,2和6,3和7分别做为一组,然后对组内进行插入排序

 分组结果如下:

 组内排序后结果如下:

 排好序后重新划分增量为4/2=2,即0,2,4,6,8为一组1,3,5,7为一组结果如下图所示:

 组内排序结果,如下图所示:

 排好序后重新划分增量为2/2=1,就是全部人划分为一个大组,然后进行插入排序,所得结果如下图所示:

 流程汇总:

 代码部分

#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
	int len, i, j, n, a[10005];
	cin >> len;
	n = len;
	for (i = 0; i < len; i++)  cin >> a[i];
	while (len / 2)
	{
		len /= 2; //设置增量
		for (i = 0; i < n - 1; i++)
		{
			for (j = i + len; j < n; j += len)
				{
					int temp1=j-len,temp2=j;
					while(temp1>=0&&a[temp2]<a[temp1]) 
					{
						swap(a[temp1],a[temp2]);
						temp2=temp1;
						temp1-=len;
					}
				}
		}
	}
	for (i = 0; i < n; i++)   cout << a[i] << ' ';
	return 0;
}

 运行结果:

 

为什么不直接用插入排序

这个嘛,博主也不好讲,各位可以想一个极端的情况,如果有1000个待排序的降序序列,而我们需要把排成升序的序列,用插入排序排完则需要交换数据(1+999)*999/2次,而使用希尔排序~(留个思考,嘻嘻!) 为了给大家一个直观的感受,下面给各位看一组别人曾经统计过的数据~

总结

博主创作不易,🥂(❁´◡`❁)您的点赞➕评论➕收藏⭐是作者创作的最大动力🤞

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

deyong1024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值