基于Keras的手写数字识别(附源码)

目录

引言

为什么要创建虚拟环境,好处在哪里?

源码 

我修改的部分

调用本地数据

修改第二层卷积层


引言

本文是博主为了记录一个好的开源代码而写,下面是代码出处!强烈建议收藏!【深度学习实战—1】:基于Keras的手写数字识别(非常详细、代码开源)

写的非常好,但是复现这篇博客却让我吃了很多苦头, 大家要先下载Anaconda3然后创建一个虚拟环境,在虚拟环境里面主要下载以下三个东西版本号只要对应好,肯定能运行,其他的库少什么安装什么!如果用显卡跑模型,原博客有提及配置!

版本号
Python版本 3.7.3
Keras版本 2.4.3
tensorflow版本 2.4.0

为什么要创建虚拟环境,好处在哪里?

在进行机器学习项目时,我们经常会遇到需要为不同的模型安装不同版本的Python或相关库的情况。这是因为每个模型可能依赖于特定版本的库,这些版本之间可能存在兼容性差异。如果不使用虚拟环境,而是在主环境中直接安装这些库,可能会遇到以下问题:

首先,当你为新的模型安装特定版本的库时,可能会覆盖掉主环境中已经存在的其他模型所需的库版本,导致之前的模型无法正常运行。

其次,不同的Python版本之间也可能存在兼容性问题。如果你直接在主环境中升级或降级Python版本,可能会影响到依赖于特定Python版本的其他项目。

为了避免这些问题,使用虚拟环境变得尤为重要。虚拟环境是一个隔离的Python环境,其中可以安装特定版本的Python和库,而不会影响到主环境或其他虚拟环境。这样,你可以为每个机器学习模型创建一个独立的虚拟环境,并在其中安装所需的Python版本和库版本,从而确保每个模型都能在其特定的环境中稳定运行。

通过这种方法,你可以轻松地管理多个项目,而无需担心库版本冲突或Python版本不兼容的问题。希望这样的解释能帮助大家更好地理解虚拟环境在机器学习项目中的重要性。

源码 

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from keras.datasets import mnist
from sklearn.metrics import confusion_matrix
import seaborn as sns
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from keras.utils import np_utils
import tensorflow as tf

config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=config)

# 设定随机数种子,使得每个网络层的权重初始化一致
# np.random.seed(10)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

deyong1024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值