2019蓝桥杯.后缀表达式

题目描述


给定 N 个加号、M 个减号以及 N + M + 1 个整数 A 1 ,A 2 ,··· ,A N+M+1 ,小
明想知道在所有由这 N 个加号、M 个减号以及 N + M +1 个整数凑出的合法的
后缀表达式中,结果最大的是哪一个?
请你输出这个最大的结果。
例如使用1 2 3 + -,则 “2 3 + 1 -” 这个后缀表达式结果是 4,是最大的。


【输入格式】


第一行包含两个整数 N 和 M。
第二行包含 N + M + 1 个整数 A 1 ,A 2 ,··· ,A N+M+1 。


【输出格式】


输出一个整数,代表答案。


【样例输入】


1 1
1 2 3


【样例输出】


4


【评测用例规模与约定】


对于所有评测用例,0 ≤ N, M ≤ 100000,−10 9 ≤ A i ≤ 10 9 。

求解:1>可用数组a存放数字

           2>将数组从小到大排序

           3>将最大数减最小数得到的数存放于数组b中,以此类

   若m=1,n=1,数字为1,2,3         

   则a[0]=1,a[1]=2,a[2]=3;
       b[0]=a[2]-a[0];
       b[1]=a[1];
    sum求和得值

#include<algorithm>
#include<iostream>
using namespace std;
int main()
{
	int m,n,sum=0;
	int a[100000];
	int b[100000];
	scanf("%d %d",&m,&n);
	int x=m;
	int y=n;
	for(int i=0; i<n+m+1; i++)
	{
		scanf("%d",&a[i]);//输入数字
	}
    sort(a,a+n+m+1);//从小到大排序
	for(int i=0; i<n+m+1; i++)
	{
		while(m)//判断是否有减号
		{
			if(n+m-i!=i)
				b[i]=a[n+m-i]-a[i];
			else b[i]=-a[i];
			m--;
		}
		break;
	}
	if(n)//判断是否有加号
	{
		for(int i=x;i<=y;i++)
		{
			b[i]=a[i];
		}
	}
	for(int i=0; i<n+1; i++)
	{
		sum+=b[i];//求和
		
	}
	printf("%d",sum);
	return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

茶色岛^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值