题目描述
给定 N 个加号、M 个减号以及 N + M + 1 个整数 A 1 ,A 2 ,··· ,A N+M+1 ,小
明想知道在所有由这 N 个加号、M 个减号以及 N + M +1 个整数凑出的合法的
后缀表达式中,结果最大的是哪一个?
请你输出这个最大的结果。
例如使用1 2 3 + -,则 “2 3 + 1 -” 这个后缀表达式结果是 4,是最大的。
【输入格式】
第一行包含两个整数 N 和 M。
第二行包含 N + M + 1 个整数 A 1 ,A 2 ,··· ,A N+M+1 。
【输出格式】
输出一个整数,代表答案。
【样例输入】
1 1
1 2 3
【样例输出】
4
【评测用例规模与约定】
对于所有评测用例,0 ≤ N, M ≤ 100000,−10 9 ≤ A i ≤ 10 9 。
求解:1>可用数组a存放数字
2>将数组从小到大排序
3>将最大数减最小数得到的数存放于数组b中,以此类
若m=1,n=1,数字为1,2,3
则a[0]=1,a[1]=2,a[2]=3;
b[0]=a[2]-a[0];
b[1]=a[1];
sum求和得值
#include<algorithm>
#include<iostream>
using namespace std;
int main()
{
int m,n,sum=0;
int a[100000];
int b[100000];
scanf("%d %d",&m,&n);
int x=m;
int y=n;
for(int i=0; i<n+m+1; i++)
{
scanf("%d",&a[i]);//输入数字
}
sort(a,a+n+m+1);//从小到大排序
for(int i=0; i<n+m+1; i++)
{
while(m)//判断是否有减号
{
if(n+m-i!=i)
b[i]=a[n+m-i]-a[i];
else b[i]=-a[i];
m--;
}
break;
}
if(n)//判断是否有加号
{
for(int i=x;i<=y;i++)
{
b[i]=a[i];
}
}
for(int i=0; i<n+1; i++)
{
sum+=b[i];//求和
}
printf("%d",sum);
return 0;
}