成功之路,刷题第一步,行动起来!
题目:
给定一个长度为n的数组nums,请你找到峰值并返回其索引。数组可能包含多个峰值,在这种情况下,返回任何一个所在位置即可。
1.峰值元素是指其值严格大于左右相邻值的元素。严格大于即不能有等于
2.假设 nums[-1] = nums[n] = −∞
3.对于所有有效的 i 都有 nums[i] != nums[i + 1]
4.你可以使用O(logN)的时间复杂度实现此问题吗?
牛客网链接:
示例1:
输入:
[2,4,1,2,7,8,4]返回值:
1说明:
4和8都是峰值元素,返回4的索引1或者8的索引5都可以
示例2:
输入:
[1,2,3,1]返回值:
2说明:
3 是峰值元素,返回其索引 2
题目分析:
首先题目中第二点特别重要,数组的左端点和右端点都是无穷小的,那么同时就意味着峰值的左边是递增的。右边是递减的,题目中说只需要确定一个峰值,那么峰值要么在左边,要么在右边,要么在中间。到这里我们就考虑使用二分查找的方法。让左右区间不断的去压缩,一直在逼近峰值,直到左右区间相等时,它一定是峰值。
1). nums[mid] < nums[mid + 1]说明在“递增”,则可以使left = mid + 1(因为mid肯定不是峰值),峰值肯定在右边,向“峰”处压缩区间。
2). nums[mid] > nums[mid + 1]说明在“递减”,则应该使right = mid(因为mid是大于右边的值,即mid可能是峰值),峰值肯定在左边,向“峰”处压缩区间。
代码实现:
int findPeakElement(int* nums, int numsLen)
{
int left = 0;
int right = numsLen - 1;
while (left < right)
{
int mid = (left + right) >> 1;
if (nums[mid] > nums[mid + 1])
{
right = mid;
}
else
{
left = mid + 1;
}
}
return left;
}
小结:
二分查找的核心算法就是对区间进行压缩,即只要满足可以对两块区间进行划分,一次可以筛选掉一块的区间,就可以考虑二分查找。