BM19 寻找峰值

成功之路,刷题第一步,行动起来!

题目:

      给定一个长度为n的数组nums,请你找到峰值并返回其索引。数组可能包含多个峰值,在这种情况下,返回任何一个所在位置即可。

1.峰值元素是指其值严格大于左右相邻值的元素。严格大于即不能有等于

2.假设 nums[-1] = nums[n] = −∞

3.对于所有有效的 i 都有 nums[i] != nums[i + 1]

4.你可以使用O(logN)的时间复杂度实现此问题吗? 

牛客网链接:

寻找峰值_牛客题霸_牛客网 (nowcoder.com)icon-default.png?t=M3C8https://www.nowcoder.com/practice/fcf87540c4f347bcb4cf720b5b350c76?tpId=295&tqId=2227748&ru=/exam/oj&qru=/ta/format-top101/question-ranking&sourceUrl=%2Fexam%2Foj 

示例1:

输入:

[2,4,1,2,7,8,4]

返回值:

1

说明:

4和8都是峰值元素,返回4的索引1或者8的索引5都可以

示例2:

输入:

[1,2,3,1]

返回值:

2

说明:

3 是峰值元素,返回其索引 2 

题目分析:

      首先题目中第二点特别重要,数组的左端点和右端点都是无穷小的,那么同时就意味着峰值的左边是递增的。右边是递减的,题目中说只需要确定一个峰值,那么峰值要么在左边,要么在右边,要么在中间。到这里我们就考虑使用二分查找的方法。让左右区间不断的去压缩,一直在逼近峰值,直到左右区间相等时,它一定是峰值。

      1).    nums[mid] < nums[mid + 1]说明在“递增”,则可以使left = mid + 1(因为mid肯定不是峰值),峰值肯定在右边,向“峰”处压缩区间。

      2).   nums[mid] > nums[mid + 1]说明在“递减”,则应该使right = mid(因为mid是大于右边的值,即mid可能是峰值),峰值肯定在左边,向“峰”处压缩区间。

 

代码实现:

int findPeakElement(int* nums, int numsLen)
{
    
    int left = 0;
    int right = numsLen - 1;
    while (left < right)
    {
        int mid = (left + right) >> 1;
        if (nums[mid] > nums[mid + 1])
        {
            right = mid;
        }
        else
        {
            left = mid + 1;
        }
    }
    return left;
}

 

小结: 

     二分查找的核心算法就是对区间进行压缩,即只要满足可以对两块区间进行划分,一次可以筛选掉一块的区间,就可以考虑二分查找。

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小太空人w

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值