1.Fast R-CNN
论文精读
摘要: 两个主要挑战:
- 必须处理许多候选对象位置(通常称为“建议”)。
- 这些候选对象只提供了粗略的定位,必须加以改进才能实现精确的定位。这些问题的解决方案通常会牺牲速度、准确性或简单性。
在本文中,我们简化了最先进的基于convnet的目标检测器的训练过程。我们提出了一种单阶段训练算法,该算法联合学习对目标建议进行分类并细化其空间位置。
- Fast RCNN具有更高的目标检测的精度
- 训练过程采用多任务的损失函数
- 训练可以更新所有网络层的参数(Fast R-CNN可以更新所有网络层的参数是指,在训练过程中,它不仅可以优化全连接层的权重,还可以优化卷积层的权重。这样可以使得网络更好地适应目标检测的任务,提高检测的准确度。相比之下&#x