【目标检测经典模型比较】--YOLOv1、v2、v3、v4、v5、x、v7、v8

本文概述了YOLO系列从v1到v8的目标检测算法的发展,包括结构改进、性能提升和面临的挑战。YOLOv8尤其突出在速度和精度上的显著进步,成为实时检测器的首选。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv1、v3、v5、v7、v8

请添加图片描述

1.YOLO(2015)

请添加图片描述
请添加图片描述
结构
在这里插入图片描述
YOLO检测网络包括24个卷积层2个全连接层

其中,卷积层用来提取图像特征,全连接层用来预测图像位置和类别概率值。

  • YOLO网络借鉴了GoogLeNet分类网络结构。不过使用1x1卷积层(此处1x1卷积层的存在是为了跨通道信息整合)+3x3卷积层简单替代。
  • YOLO论文中,作者还给出一个更轻快的检测网络fast YOLO,它只有9个卷积层和2个全连接层。
  • Loss函数使用均方和误差,即网络输出的SxSx(Bx5 + C)维向量与真实图像的对应SxSx(Bx5 + C)维向量的均方和误差。
    coordError、iouError和classError分别代表预测数据与标定数据之间的坐标误差IOU误差分类误差

训练:

batchsize=64 momentum=0.9 decay=0.0005 前期:learning rate= 10−3 to 10−2.后期10−2训练75个epoch,然后用10−3训练30个epoch,最后用10−4训练30个epoch。dropout layer with rate =0.5 数据增强:20%的随机缩放和平移,随机调整曝光和饱和度的图像在HSV颜色空间的一个因子1.5

优点:

  1. 速度快,将检测视为回归问题(平均精度也高)
  2. 对图像进行全局推理,关联背景上下文(背景错误少)
  3. 学习对象的通用模式(相当于模板),推广性强

缺点:

  1. 准确性低,定位不佳(小对象更明显)
  2. 空间约束限制了我们的模型可以预测的附近物体的数量
  3. 难以预测框形状变化大的
  4. 损失函数在小边界框和大边界框中处理错误是相同的。

2.YOLOv2(2016) YOLO9000: Better, Faster, Stronger

1. 结构

数据集:ImageNet的9000多个类
yolov2主要集中在提高召回率

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值