Description
已知多项式方程:
a
0
+
a
1
x
+
a
2
x
2
+
⋯
+
a
n
x
n
=
0
a_0+a_1 x+a_2 x^2+\cdots+a_n x^n=0
a0+a1x+a2x2+⋯+anxn=0
求这个方程在
[
1
,
m
]
[1, m]
[1,m] 内的整数解 (
n
n
n 和
m
m
m 均为正整数 ) 。
Input Data
输入共
n
+
2
n+2
n+2 行。
第一行包含 2 个整数
n
、
m
n 、 m
n、m ,每两个整数之间用一个空格隔开。
接下来的
n
+
1
n+1
n+1 行每行包含一个整数,依次为
a
0
,
a
1
,
a
2
,
…
,
a
n
a_0, a_1, a_2, \ldots, a_{n}
a0,a1,a2,…,an 。
Output Data
第一行输出方程在
[
1
,
m
]
[1, m]
[1,m] 内的整数解的个数。
接下来每行一个整数,按妱从小到大的顺序依次输出方程在
[
1
,
m
]
[1, m]
[1,m] 内的一个整数解。
Sample Input 1
2 10
1
-2
1
Sample Output 1
1
1
Sample Input 2
2 10
2
-3
1
Sample Output 2
2
1
2
Sample Input 3
2 10
1
3
2
Sample Output 3
0
Tips:
30pts: 无高精度直接算
50pts: 有高精度直接算,秦九韶算法(数据量大还是超时)
70pts: 无高精度, 取模, 秦九韶算法,暴力从1到m进行判断, 超时
100pts: 无高精度,取模,加上秦九韶算法,但是并非暴力判断,而是通过设置两个质数p和q,一个较小,一个较大,先暴力算出较小的for i in range(1, p+1)时
f
(
i
)
%
p
=
=
0
f(i) \% p == 0
f(i)%p==0的情况,然后根据多项式的性质,
f
(
i
+
k
∗
p
)
%
q
=
=
0
f(i + k * p) \% q == 0
f(i+k∗p)%q==0,这样就可以减少大量的不必要的计算。
Code:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int p = 10007, q = 100000007;
int n, m, i, cnt, ans[1000003], v[p], y;
ll a[103], b[103], aa, bb;
char c;
inline char gc() {
static char buf[100000], * p1 = buf, * p2 = buf;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int read() {
int x = 0, fl = 1; char ch = gc();
for (; ch < 48 || ch>57; ch = gc())
if (ch == '-') fl = -1;
for (; 48 <= ch && ch <= 57; ch = gc())
x = (x << 3) + (x << 1) + (ch ^ 48);
return x * fl;
}
inline bool f(int p, int M, ll* t) {//把p代入方程,判断模M是否为0
ll x = t[n];
for (int i = n - 1; i >= 0; i--) x = (x * p + t[i]) % M;
return x == 0;
}
inline void write(int a) { if (a < 0)a = -a, putchar('-'); if (a >= 10)write(a / 10); putchar(a % 10 | 48); }
inline void println(int a) { write(a); puts(""); }
int main() {
n = read(); m = read();
for (i = 0; i <= n; i++) {//读入优化
aa = 0, bb = 0;
for (c = gc(), y = 0; c < 48 || 57 < c; c = gc())
if (c == '-') y = 1;
for (; 48 <= c && c <= 57; c = gc())
aa = ((aa << 3) + (aa << 1) + (c ^ 48)) % p,
bb = ((bb << 3) + (bb << 1) + (c ^ 48)) % q;
a[i] = y ? p - aa : aa;
b[i] = y ? q - bb : bb;
}
for (i = 0; i < p; i++)
if (f(i, p, a)) v[i] = 1;
for (i = 1; i <= m; i++)
if (v[i % p] && f(i, q, b)) ans[cnt++] = i;
println(cnt);
for (i = 0; i < cnt; i++)
println(ans[i]);
}