C. 解方程 (数学)

Description
已知多项式方程:
a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n = 0 a_0+a_1 x+a_2 x^2+\cdots+a_n x^n=0 a0+a1x+a2x2++anxn=0
求这个方程在 [ 1 , m ] [1, m] [1,m] 内的整数解 ( n n n m m m 均为正整数 ) 。
Input Data
输入共 n + 2 n+2 n+2 行。
第一行包含 2 个整数 n 、 m n 、 m nm ,每两个整数之间用一个空格隔开。
接下来的 n + 1 n+1 n+1 行每行包含一个整数,依次为 a 0 , a 1 , a 2 , … , a n a_0, a_1, a_2, \ldots, a_{n} a0,a1,a2,,an
Output Data
第一行输出方程在 [ 1 , m ] [1, m] [1,m] 内的整数解的个数。
接下来每行一个整数,按妱从小到大的顺序依次输出方程在 [ 1 , m ] [1, m] [1,m] 内的一个整数解。
Sample Input 1
2 10
1
-2
1
Sample Output 1
1
1

Sample Input 2
2 10
2
-3
1
Sample Output 2
2
1
2

Sample Input 3
2 10
1
3
2
Sample Output 3
0

Tips:
30pts: 无高精度直接算
50pts: 有高精度直接算,秦九韶算法(数据量大还是超时)
70pts: 无高精度, 取模, 秦九韶算法,暴力从1到m进行判断, 超时
100pts: 无高精度,取模,加上秦九韶算法,但是并非暴力判断,而是通过设置两个质数p和q,一个较小,一个较大,先暴力算出较小的for i in range(1, p+1)时 f ( i ) % p = = 0 f(i) \% p == 0 f(i)%p==0的情况,然后根据多项式的性质, f ( i + k ∗ p ) % q = = 0 f(i + k * p) \% q == 0 f(i+kp)%q==0,这样就可以减少大量的不必要的计算。

Code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int p = 10007, q = 100000007;
int n, m, i, cnt, ans[1000003], v[p], y;
ll a[103], b[103], aa, bb;
char c;
inline char gc() {
    static char buf[100000], * p1 = buf, * p2 = buf;
    return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
}
inline int read() {
    int x = 0, fl = 1; char ch = gc();
    for (; ch < 48 || ch>57; ch = gc())
        if (ch == '-') fl = -1;
    for (; 48 <= ch && ch <= 57; ch = gc())
        x = (x << 3) + (x << 1) + (ch ^ 48);
    return x * fl;
}
inline bool f(int p, int M, ll* t) {//把p代入方程,判断模M是否为0
    ll x = t[n];
    for (int i = n - 1; i >= 0; i--) x = (x * p + t[i]) % M;
    return x == 0;
}
inline void write(int a) { if (a < 0)a = -a, putchar('-'); if (a >= 10)write(a / 10); putchar(a % 10 | 48); }
inline void println(int a) { write(a); puts(""); }
int main() {
    n = read(); m = read();
    for (i = 0; i <= n; i++) {//读入优化
        aa = 0, bb = 0;
        for (c = gc(), y = 0; c < 48 || 57 < c; c = gc()) 
            if (c == '-') y = 1;
        for (; 48 <= c && c <= 57; c = gc()) 
            aa = ((aa << 3) + (aa << 1) + (c ^ 48)) % p, 
            bb = ((bb << 3) + (bb << 1) + (c ^ 48)) % q;
        a[i] = y ? p - aa : aa;
        b[i] = y ? q - bb : bb;
    }
    for (i = 0; i < p; i++)
        if (f(i, p, a)) v[i] = 1;
    for (i = 1; i <= m; i++)
        if (v[i % p] && f(i, q, b)) ans[cnt++] = i;
    println(cnt);
    for (i = 0; i < cnt; i++) 
        println(ans[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值