总时间限制:
1000ms
内存限制:
65536kB
描述
利用公式x1 = (-b + sqrt(bb-4ac))/(2a), x2 = (-b - sqrt(bb-4ac))/(2a)求一元二次方程ax2+ bx + c =0的根,其中a不等于0。
输入
输入一行,包含三个浮点数a, b, c(它们之间以一个空格分开),分别表示方程ax2 + bx + c =0的系数。
输出
输出一行,表示方程的解。 若b2 = 4 * a * c,则两个实根相等,则输出形式为:x1=x2=...。 若b2 > 4 * a * c,则两个实根不等,则输出形式为:x1=...;x2 = ...,其中x1>x2。 若b2 < 4 * a * c,则有两个虚根,则输出:x1=实部+虚部i; x2=实部-虚部i,即x1的虚部系数大于等于x2的虚部系数,实部为0时不可省略。实部 = -b / (2a), 虚部 = sqrt(4ac-bb) / (2*a) 所有实数部分要求精确到小数点后5位,数字、符号之间没有空格。
样例输入
样例输入1 1.0 2.0 8.0 样例输入2 1 0 1
样例输出
样例输出1 x1=-1.00000+2.64575i;x2=-1.00000-2.64575i 样例输出2 x1=0.00000+1.00000i;x2=0.00000-1.00000i
#include <iostream>
#include <cstdio>
#include <cmath>
#define eps 1e-7//定义一个很小的数
using namespace std;
int main()
{
double a,b,c;
double x1=0,x2=0,det,d,e;
scanf("%lf %lf %lf",&a,&b,&c);
det=b*b-4*a*c;
if (det>0)
//讨论当det大于0时
{
x1=(-b + sqrt(det))/(2*a);
//sqat(det)求平方根
x2 = (-b - sqrt(det))/(2*a);
if(x1>x2)
printf("x1=%.5f;x2=%.5f",x1,x2);
else
printf("x1=%.5f;x2=%.5f",x2,x1);
//保证x1始终大于x2
}
else if (det-0>-eps&&det-0<eps)
//讨论当det=0时
{
/*判断两个浮点数相等,不能直接用a==b形式,
应该用 a-b>-eps&&a-b<eps形式,eps是很小的数,比如 1e-7 */
x1=(-b + sqrt(det))/(2*a);
printf("x1=x2=%.5f",x1);
}
else
//讨论当det<0时
{
d=0-b/(2*a);
//要写成0-b,不然b为0时,0前面有负号
e=sqrt(0-det)/(2*a);
printf("x1=%.5f+%.5fi;x2=%.5f-%.5fi",d,e,d,e);
}
return 0;
}
1、找输出输入
2、求det-判断det的大小(if-else)-分类讨论
总结:
1、在if的()中两个浮点数判断是否相等不能a==b,而是fabs(a-b)<1e-7;
2、d=0-b/(2*a);要写成0-b,不然b为0时,0前面有负号