论文链接:
IEEE Xplore Full-Text PDF:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9838470
1. 背景
随着无线通信技术的快速发展,传统通信系统已经接近了香农极限(Shannon limit)。香农极限是指在给定信道条件下,能够可靠传输数据的最大速率。尽管通过先进的信道编码技术,如低密度奇偶校验码(LDPC)和极化码,现代通信系统已经接近这一极限,但这些技术仍无法满足日益增长的移动设备数量和高数据速率的需求。
语义通信的提出源于对如何更高效传输有意义的信息的关注。与传统通信系统侧重于符号的精确传输不同,语义通信强调传输信息的实际意义,即传输的信息不仅要在比特级别上准确,更要在语义层面上保真(semantic fidelity)。
目前为止,语义通信有三种实现范式:
-
基于目标导向(goal-oriented)的通信范式,只传输重要且必要的消息:语义压缩是通过过滤掉与通信目标相关性较小的冗余消息来实现的;如控制理论的准确率和基于信息年龄的度量等。实现了可解释性的语义压缩和通信,然而对于可实现性能的评估一直没有统一的衡量标准,被限制在一些特定的无线服务或通信环境中。
-
使用深度神经网络将原始数据嵌入到低维空间中,以压缩源信息并实现语义通信:如基于自然语言处理( NLP )技术的联合信源信道编解码框架,双向长短时记忆网络( BiLSTM )和Transformer。依靠大规模深度学习( Deep Learning,DL )模型准确、快速地识别和提取意图语义信息,不需要语义度量,然而DL通常需要大量高质量的标注数据,端到端操作被认定为黑箱过程,缺乏可解释性。
-
利用信源和信宿之间共享的知识库来实现语义压缩和通信。在没有语义度量的情况下,借助知识库实现语义压缩和通信,并且由于知识库中的推理规则,其在压缩过程中具有可解释性。
针对现有的语义通信框架存在一些不足,例如缺乏推理能力(inference)和错误校正机制(error correction)(限制了系统在实际应用中的性能 performance 和鲁棒性 robustness )。为了克服这些不足,本文提出了一个认知语义通信框架(cognitive semantic communication system),该框架通过利用知识图谱来增强语义信息的传输和解码能力。
2. 认知语义通信系统
该系统通过共享的知识图谱进行语义通信,知识图谱作为发送端和接收端之间的共享知识库。语义信息通过知识图谱中的三元组(头实体、关系、尾实体)进行表示和压缩,传输过程中只传输重要的语义信息。由于该系统能够基于知识图谱进行推理,接收端可以通过推理纠正语义错误,因此具备以下三大优势:
- 高语义压缩率:只传输必要的语义信息。
- 强健的性能:通过知识图谱推理纠正语义层面的错误。
- 可解释性:三元组形式的语义符号具有良好的可读性,便于理解。
认知语义通信框架(Cognitive Semantic Communication Framework)
在传统的语义通信系统中,发送者发送抽象的语义信息,接收者不加推理地解释其含义。而认知语义通信系统具有“认知”特征,是由知识图谱实现的。在本文提出的系统中,不要求信息完全传输,只传输重要的语义信息(如三元组,即头部实体、关系实体和尾部实体)。认知语义通信框架由以下几个主要组件构成:
- 知识图谱(Knowledge Graph):作为共享的知识库,知识图谱在发射端和接收端之间同步。知识图谱由三元组(triples)组成,包括头实体、关系、尾实体,用于表达事实。例如,“罗马尼亚的阿尔巴尤利亚”可以用三元组(Alba Iulia,country,Romania)表示。
- 语义符号抽象(Semantic Symbol Abstraction):发射端将文本信息转化为相应的语义符号,即三元组,并仅传输这些语义符号。这样可以显著减少需要传输的数据量。通过语义符号抽象算法,如Text2KG对齐算法(Text2KG aligner),系统能够自动从文本中提取重要的语义信息。
- 传输:在获得语义符号后,使用常规通信模块(conventional communication modules)传输语义符号(semantic symbols)。具体来说,为了提高传输效率,将语义符号s编码为x。然后进行信道编码(channel encoding),得到b。在目的地接收二进制矢量(binary vectors),通过信道解码(channel decoding)得到语义符号码(semantic symbol code)。
- 错误校正(error correction)与推理(inference):接收端利用知识图谱中的推理规则,基于接收到的部分或错误的语义符号重构原始信息。这种基于推理的错误校正机制可以提高系统在噪声环境下的鲁棒性。
- 语义符号重构(semantic symbol recognition):使用预训练的自然语言处理模型,如T5,接收端将解码后的语义符号(semantic symbol)转化为自然语言文本,恢复信息的原始含义,克服了使用固定位长度编码进行编码的缺点。由于从M到S的映射是多对一的,因此可能存在语义歧义。为了减轻语义歧义并实现三元文本转换,在训练语料库上对预训练模型文本到文本转换模型(T5)进行了微调。由于预训练模型T5是由数十亿个句子提供的,因此在生成重构文本时可以考虑上下文。
3. 知识图谱和系统实现

知识图谱(Knowledge Graph)
知识图谱作为语义信息的载体,结构上包括实体和关系。大型知识图谱通常通过四个步骤构建:信息抽取、知识融合、知识处理和知识更新。这些步骤确保了知识图谱的准确性和广泛性。例如,一个知识图谱可能包含关于地点、人物、事件等方面的信息,这些信息以三元组形式存储,(head, relation, tail) 或者 (entity, attribute, value)。
语义符号抽象(Semantic Symbol Abstraction)
这一过程的目标是将输入文本映射到知识图谱中的三元组 triplet(h, r, t)。系统遍历输入文本中的每个句子,并寻找匹配的头实体和尾实体。只要找到匹配的头和尾实体,就认为找到了相关的三元组,不必要求关系严格匹配,因为关系可以用多种方式表达。举例来说,对于输入文本“阿什哈巴德国际机场的跑道长度是3800米”,系统会从中提取(Ashgabat International Airport,runway length,3800)这样的三元组。
传统通信模块(Conventional Communication Modules)
系统利用传统的通信模块来编码、传输和解码语义符号。具体来说,语义符号首先被编码为二进制向量,然后通过信道编码提高传输效率。接收端使用信道解码恢复二进制向量,并通过知识图谱进行错误校正。
错误校正通过比较接收的二进制向量与知识图谱中的合法编码,找到最相似的符号,从而实现纠错。这种基于知识的错误校正方式不同于传统的基于符号匹配的方式,更具智能性和适应性。
语义符号识别(Semantic Symbol Recognition)
在接收端,系统需要将接收到的语义符号转换回自然语言文本。这一过程由微调的T5模型完成。T5模型是一种强大的自然语言处理模型,可以理解上下文并生成符合语义的文本输出。通过在大量领域数据上微调T5模型,系统能够处理各种类型的语义符号转换任务,确保输出文本不仅在字面上准确,而且在语义上保真。
4. 仿真结果
实验设置
使用WebNLG数据集对系统进行了训练和测试。训练集包括多种领域的知识图谱和文本对,如机场、艺术家、运动员、建筑等领域。这种多样化的数据集确保了系统的广泛适用性。系统在100步的微调过程中采用了0.0001的学习率,对T5模型进行了训练,确保其能够准确将三元组转换为自然语言文本。
性能对比与评估
数据压缩率:实验表明,认知语义通信系统在传输长句子时,所需的比特数显著少于传统通信系统。这是因为系统通过提取语义信息实现了高效的数据压缩,而不必传输冗余的符号信息。
语义相似度和鲁棒性:即使在较差的信道环境中(例如信道错误率较高时),系统也能够保持高水平的语义相似度分数。这是因为知识图谱和推理机制使系统能够通过理解上下文来纠正错误和恢复语义信息。传统系统在这种情况下往往表现不佳,因为它们依赖于符号的精确匹配而不是语义理解。
具体案例分析:例如,当传输文本“阿什哈巴德国际机场的跑道长度是3800米”时,即使信道环境恶劣,接收端仍能通过知识图谱推理,重建出语义一致的句子。另一个案例是处理语义歧义,当传输文本“Batchoy includes chicken”时,接收端能够通过上下文理解,将其重构为“Chicken is an ingredient of Batchoy”,避免了语义歧义。
5. 结论
本文提出了一种基于知识图谱的认知语义通信系统,通过结合自然语言处理和推理机制,实现了高效的数据压缩和语义信息传输。系统能够在保持高语义保真度的同时显著减少传输数据量,尤其在噪声环境中表现出色。
未来研究可以继续优化知识图谱的构建和更新方法,以适应动态环境和多样化的信息需求。此外,还可以探索更多先进的自然语言处理模型,以进一步提高语义符号识别的准确性和效率。