“用一半的硬件资源,跑出3倍的速度”——这听起来像是科幻小说里的情节,但清华大学团队与清程极智联合开源的大模型推理引擎“赤兔Chitu”,却让它成为了现实!2025年3月14日,这一开源项目的发布不仅让国产AI芯片首次实现了对FP8精度模型的原生支持,更标志着中国AI产业“大模型+国产引擎+国产芯片”的完整技术闭环正式加速成型
一、为什么赤兔Chitu是“划时代”的开源项目?
-
突破硬件垄断:FP8模型不再依赖英伟达“神卡”
FP8(8位浮点精度)是当前大模型推理的黄金标准,但长期以来只能依赖英伟达最新的Hopper架构(如H100/H200)运行。赤兔Chitu首次实现了非Hopper架构GPU(如英伟达旧款A800)和国产芯片原生支持FP8模型,打破了硬件垄断。-
实测数据惊人:在A800集群部署DeepSeek-671B模型时,GPU用量减少50%,推理速度却提升3.15倍。
-
技术核心:通过GeMM、MoE等算子的指令级优化,直接处理FP8数据而非简单量化,确保精度无损。
-
-
国产芯片的“救星”:让国产算力真正跑起来
国产芯片常因软件生态薄弱而难以落地。赤兔Chitu通过深度适配国产硬件架构(如沐曦、燧原等),提供开箱即用的优化方案,大幅缩短适配周期。团队甚至推出“推理一体机”,帮助企业快速部署私有化大模型。
二、赤兔Chitu的三大杀手锏
-
全场景适配:从单卡到集群,从CPU到GPU
-
支持纯CPU、单GPU、大规模集群等多种部署模式,灵活应对不同算力需求。
-
针对不同场景提供“低延迟”“高吞吐”“小显存”三种优化模式,资源利用率最大化。
-
-
性能与成本的双重颠覆
-
成本砍半:企业无需高价购买最新英伟达显卡,存量GPU即可高效运行FP8模型。
-
速度翻番:通过动态负载调整和智能编译技术,推理实时性显著提升。
-
-
开源生态:为国产芯片“抢时间”
-
开源代码允许社区共同优化,加速国产芯片适配。
-
与芯片厂商共建生态,避免重复造轮子,推动“国产大模型+国产引擎+国产芯片”闭环。
-
三、赤兔Chitu将如何改变AI行业?
-
企业端:降低大模型部署门槛,金融、医疗等行业可快速实现私有化AI应用。
-
国产芯片厂商:聚焦硬件创新,软件适配由赤兔引擎“兜底”。
-
开发者社区:开源代码+开放贡献通道,加速技术迭代。
赤兔Chitu的开源不仅是技术突破,更是国产AI生态的里程碑。正如清程极智CEO汤雄超所言:“当新模型或数据类型出现时,赤兔能帮助国产芯片跟上国际节奏,缩小‘时间差’。”随着更多国产芯片优化版本的发布,中国AI产业有望从“跟跑”转向“领跑”。
如果你正在为高昂的算力成本头疼,或苦恼于国产芯片的生态短板,不妨试试赤兔Chitu——这只“国产神驹”或许正是你需要的答案!访问GitHub仓库,加入开源社区,一起为中国AI的未来加速!