赤兔Chitu:国产AI算力的“超跑引擎”,打破英伟达算力神话!

“用一半的硬件资源,跑出3倍的速度”——这听起来像是科幻小说里的情节,但清华大学团队与清程极智联合开源的大模型推理引擎“赤兔Chitu”,却让它成为了现实!2025年3月14日,这一开源项目的发布不仅让国产AI芯片首次实现了对FP8精度模型的原生支持,更标志着中国AI产业“大模型+国产引擎+国产芯片”的完整技术闭环正式加速成型

 开源地址GitHub - thu-pacman/chitu

一、为什么赤兔Chitu是“划时代”的开源项目?

  1. 突破硬件垄断:FP8模型不再依赖英伟达“神卡”
    FP8(8位浮点精度)是当前大模型推理的黄金标准,但长期以来只能依赖英伟达最新的Hopper架构(如H100/H200)运行。赤兔Chitu首次实现了非Hopper架构GPU(如英伟达旧款A800)和国产芯片原生支持FP8模型,打破了硬件垄断。

    • 实测数据惊人:在A800集群部署DeepSeek-671B模型时,GPU用量减少50%,推理速度却提升3.15倍。

    • 技术核心:通过GeMM、MoE等算子的指令级优化,直接处理FP8数据而非简单量化,确保精度无损。

  2. 国产芯片的“救星”:让国产算力真正跑起来
    国产芯片常因软件生态薄弱而难以落地。赤兔Chitu通过深度适配国产硬件架构(如沐曦、燧原等),提供开箱即用的优化方案,大幅缩短适配周期。团队甚至推出“推理一体机”,帮助企业快速部署私有化大模型。

二、赤兔Chitu的三大杀手锏

  1. 全场景适配:从单卡到集群,从CPU到GPU

    • 支持纯CPU、单GPU、大规模集群等多种部署模式,灵活应对不同算力需求。

    • 针对不同场景提供“低延迟”“高吞吐”“小显存”三种优化模式,资源利用率最大化。

  2. 性能与成本的双重颠覆

    • 成本砍半:企业无需高价购买最新英伟达显卡,存量GPU即可高效运行FP8模型。

    • 速度翻番:通过动态负载调整和智能编译技术,推理实时性显著提升。

  3. 开源生态:为国产芯片“抢时间”

    • 开源代码允许社区共同优化,加速国产芯片适配。

    • 与芯片厂商共建生态,避免重复造轮子,推动“国产大模型+国产引擎+国产芯片”闭环。

三、赤兔Chitu将如何改变AI行业?

  • 企业端:降低大模型部署门槛,金融、医疗等行业可快速实现私有化AI应用。

  • 国产芯片厂商:聚焦硬件创新,软件适配由赤兔引擎“兜底”。

  • 开发者社区:开源代码+开放贡献通道,加速技术迭代。

赤兔Chitu的开源不仅是技术突破,更是国产AI生态的里程碑。正如清程极智CEO汤雄超所言:“当新模型或数据类型出现时,赤兔能帮助国产芯片跟上国际节奏,缩小‘时间差’。”随着更多国产芯片优化版本的发布,中国AI产业有望从“跟跑”转向“领跑”。

如果你正在为高昂的算力成本头疼,或苦恼于国产芯片的生态短板,不妨试试赤兔Chitu——这只“国产神驹”或许正是你需要的答案!访问GitHub仓库,加入开源社区,一起为中国AI的未来加速!

项目地址GitHub - thu-pacman/chitu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值