关于分治算法,我们最常想到的是归并排序,可是在算法竞赛中也常常用到,下面我们就讲讲分治算法。
下面我们就讲一下分治算法的时间复杂度与分治算法
(1)问题的规模缩小到一定程度可以很容易解决
(2)一个大问题能分解为若干个规模较小的相同的子问题
(3)这些子问题互相独立,即子问题之间不含公共的子问题
(4)子问题的解可以合并为该问题的解

分治法的基本步骤:
分治在每一层的递归上都有三个步骤
(1)分解问题
(2)递归的解各个子问题
分治算法的例题
棋盘覆盖
题目:
在一个 2k×2k个方格组成的棋盘中,若恰有一个方格与其他方格不同,称该方格为特殊方格,且称该棋盘为特殊棋盘(Defective Chessboard)
特殊方格在棋盘中出现的位置有 4k种情形,就有4k种不同的棋盘。
图中的特殊棋盘是当 k=2时16个特殊棋盘中一个。在棋盘覆盖问题中,要求用图所示的4种不同形状的L型骨牌覆盖给定棋盘上除特殊方格以外的所有方格,且任何两个L型骨牌不得重叠覆盖。在任何一个个 2k×2k的棋盘覆盖中,用到的L型骨牌个数为 (4k-1)/3。

#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
const int N=1010;
int board[N][N];
int number;
void cheak(int x,int y,int dl,int dr,int size)//x,y代表是每个主方块的左上角坐标
//dl,dr为特殊方块的位置,size为总长度
{
if(size==1) return ;
int u = size/2; //把每块切分
number++;
if(dl < x + u && dr < y + u) //如果判断特殊方格在不在左上棋盘
{
cheak(x,y,dl,dr,u); //递归处理左上角的棋盘
}
else //用number号的棋盘放在左上角
{
board[u+x-1][u+y-1] = number;
cheak(x,y,u+x-1,u+y-1,u);//递归处理左上角的棋盘
}
if(dl < x + u && dr >= y + u)//右上角
{
cheak(x,y+u,dl,dr,u);
}
else
{
board[x+u-1][y+u] = number;
cheak(x,y+u,x+u-1,y+u,u);
}
if(dl >=x + u && dr < y + u)//左下角
{
cheak(x+u,y,dl,dr,u);
}
else
{
board[x + u][y+u-1] = number;
cheak(x+u,y,x + u,y+u-1,u);
}
if(dl >= x+u && dr >= u + y) //右小角
{
cheak(x+u,y+u,dl,dr,u);
}
else
{
board[x+u][y+u] = number;
cheak(x+u,y+u,x+u,y+u,u);
}
}
int main()
{
int size,dl,dr; //size为棋盘的大小,dr,dl为特殊方块的位置
cin>>size>>dl>>dr;
cheak(0,0,dl,dr,size);//左上角起点的坐标为(0,0)
for(int i = 0;i<size;i++) //遍历输出所有的数
{
for(int j = 0;j<size;j++)
{
cout<<board[i][j]<<" ";
}
cout<<endl;
}
return 0;
}
棋盘问题的扩展题目(迷宫招驸马)
传说有一座宫殿,宫殿里有个8*8的格子迷宫,公主站在方格(3,3)上,只要谁能用地毯将除公主站立的地方外的所有地方盖上,美丽漂亮聪慧的公主就是他的人了。公主这一个方格不能用地毯盖住,毯子的形状有所规定,只能有四种选择(如图):

并且每一方格只能用一层地毯。请设计并实现你追公主的算法。
基本思想与代码跟棋盘问题相识