一、题目描述
给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n)) 。
示例 1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:
输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
提示:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/median-of-two-sorted-arrays
二、分析题目
1、寻找两个数组的中位数
两个数组都是正序数组
寻找两个数组所有元素的中位数
2、要求
算法的时间复杂度为O(log(m+n))
3、限制
m+n>=1:数组不同是为空(中位数一定存在)
4、细节问题
某个数组可能为空
元素总数为偶数时,中位数是中间两数的平均值(不一定是整数)
三、算法选择:归并排序
1、将序列拆成两个或两个以上的分别排序,然后再合并成一个
2、采用归并排序,基于归并操作的一种稳定排序算法
3、合并(题目为两个有序数组,所以只需将两个数组合并即可)
寻找两个有序数组的最小值,即比较两个数组中的最小值并取较小的一个放入合并后的 数组的第一位置
寻找两个数组的第2小值,即重复上述操作
依次寻找第3,第4......最小值,直到归并结束
4、时间复杂度
需要对两个数组各浏览一遍,进行m+n-1次的比较,时间复杂度为O(m+n)
5、空间复杂度
需要额外的空间存储合并排序后的数组,空间复杂度为O(m+n)
四、代码实现
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
//新开辟数组data,记录nums1和nums2合并后的有序数组
vector<int> data;
int i=0,j=0;
while(i<nums1.size()&&j<nums2.size())
{
if(nums1[i]<nums2[j]){
data.push_back(nums1[i++]);
}
else{
data.push_back(nums2[j++]);
}
}
while(i<nums1.size())
{
data.push_back(nums1[i++]);
}
while(j<nums2.size())
{
data.push_back(nums2[j++]);
}
double ret=0; //待返回的中位数
if(data.size()%2==1)
{
ret=data[data.size()/2];
}
else{
ret=(data[(data.size()-1)/2]+data[(data.size()-1)/2+1])/2.0;
}
return ret;
}
};