归并排序寻找两个正序数组的中位数

一、题目描述

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n)) 。

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
 

提示:

nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/median-of-two-sorted-arrays

二、分析题目

        1、寻找两个数组的中位数

                两个数组都是正序数组

                寻找两个数组所有元素的中位数

        2、要求

                算法的时间复杂度为O(log(m+n))

        3、限制

                m+n>=1:数组不同是为空(中位数一定存在)

        4、细节问题 

                某个数组可能为空

                元素总数为偶数时,中位数是中间两数的平均值(不一定是整数)

三、算法选择:归并排序

        1、将序列拆成两个或两个以上的分别排序,然后再合并成一个

        2、采用归并排序,基于归并操作的一种稳定排序算法

        3、合并(题目为两个有序数组,所以只需将两个数组合并即可)

                寻找两个有序数组的最小值,即比较两个数组中的最小值并取较小的一个放入合并后的                数组的第一位置

                寻找两个数组的第2小值,即重复上述操作

                依次寻找第3,第4......最小值,直到归并结束

 

 

        4、时间复杂度

                需要对两个数组各浏览一遍,进行m+n-1次的比较,时间复杂度为O(m+n)

        5、空间复杂度

                需要额外的空间存储合并排序后的数组,空间复杂度为O(m+n)

四、代码实现

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        //新开辟数组data,记录nums1和nums2合并后的有序数组
        vector<int> data;
        int i=0,j=0;
        while(i<nums1.size()&&j<nums2.size())
        {
            if(nums1[i]<nums2[j]){
                data.push_back(nums1[i++]);
            }
            else{
                data.push_back(nums2[j++]);
            }
        }
        while(i<nums1.size())
        {
            data.push_back(nums1[i++]);
        }
        while(j<nums2.size())
        {
            data.push_back(nums2[j++]);
        }
        double ret=0; //待返回的中位数
        if(data.size()%2==1)
        {
            ret=data[data.size()/2];
        }
        else{
            ret=(data[(data.size()-1)/2]+data[(data.size()-1)/2+1])/2.0;
        }
        return ret;
    }
};

                

        

### 回答1: 你可以使用归并排序的思想来寻找两个数组中位数。具体来说,你可以比较两个数组的首个数字,将较小的数字从原数组中删除,并将它放入一个临时数组。然后,你可以继续比较两个数组的首个数字,将较小的数字从原数组中删除,并将它放入临时数组。你可以重复这个过程,直到其中一个数组为空。最后,你可以将另一个数组中剩余的数字放入临时数组中。 最后,你可以计算临时数组中位数。如果临时数组的大小为奇数,则中位数就是临时数组的第 (n+1)/2 个数字(n 是临时数组的大小)。如果临时数组的大小为偶数,则中位数就是临时数组的第 n/2 个数字和第 (n/2)+1 个数字的平均数。 示例代码(使用 C 语言): double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size){ int i = 0, j = 0, k = 0; int m = nums1Size, n = nums2Size; int *merged = (int *)malloc((m + n) * sizeof(int)); while (i < m && j < n) { if (nums1[i] < nums2[j]) { merged[k] = nums1[i]; i++; } else { merged[k] = nums2[j]; j++; } k++; } while (i < m) { merged ### 回答2: 首先,我们可以将两个数组合并成一个有序数组,然后根据数组长度的奇偶性来确定中位数的位置。 我们定义两个指针i和j,分别指向nums1和nums2的开头,同时定义两个变量prev和curr,初始化为0。prev表示上一个元素,curr表示当前元素。 我们使用while循环遍历数组,同时判断curr的值是否大于等于中位数的位置。如果是,就停止循环。 在循环中,我们比较nums1[i]和nums2[j]的大小,将较小的值赋给prev,并将较大的值赋给curr。然后移动指针i或j,具体移动哪个指针取决于哪个值较小。 当curr的值达到中位数的位置时,我们根据数组长度的奇偶性来确定中位数。如果数组长度为奇数,那么中位数就是curr的值。如果数组长度为偶数,那么中位数就是prev和curr的平均值。 最后,我们返回中位数即可。 时间复杂度分析:由于是有序数组,将两个数组合并成一个数组时间复杂度为O(m+n)。而循环遍历数组时间复杂度为O((m+n)/2),算法时间复杂度为O(log(m*n)),满足题目要求。 代码示例: ```c double findMedianSortedArrays(int* nums1, int nums1Size, int* nums2, int nums2Size){ int totalSize = nums1Size + nums2Size; int mid = (totalSize - 1) / 2; int i = 0, j = 0; int prev = 0, curr = 0; while (i < nums1Size && j < nums2Size && curr <= mid) { prev = curr; if (nums1[i] < nums2[j]) { curr = nums1[i++]; } else { curr = nums2[j++]; } } while (i < nums1Size && curr <= mid) { prev = curr; curr = nums1[i++]; } while (j < nums2Size && curr <= mid) { prev = curr; curr = nums2[j++]; } if (totalSize % 2 == 0) { return (prev + curr) / 2.0; } else { return curr; } } ``` 以上是一种解法,还有其他解法可以使用二分查找来寻找中位数。总的来说,这是一个经典的问题,可以有多种解法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值