python基础:.data.cpu().numpy()

        首先给出一个函数:

def to_np(x):
    return x.data.cpu().numpy()

        对于一些项目,运行的时候通常是使用GPU运行的,但是Numpy不支持直接处理 GPU 上的数据,所以需要将数据移动到cpu里。

        函数 to_np(x) 的作用是将输入张量 x 转换为 NumPy 数组。
   (1)x.data: 获取张量 x 的数据部分。data 属性是 PyTorch 张量的底层数据。

   (2).cpu(): 将张量从 GPU 设备移动到 CPU。对于在 GPU 上运行的模型,张量默认存储在 GPU 上,为了使用 NumPy,我们需要将其转移到 CPU。

   (3).numpy(): 将张量转换为 NumPy 数组。numpy() 方法仅适用于存储在 CPU 上的张量。

        示例:

import torch

# 定义一个张量
tensor = torch.tensor([[1, 2], [3, 4]], dtype=torch.float32)

# 假设这个张量在 GPU 上(如果有可用的 GPU)
tensor = tensor.to('cuda')

# 定义 to_np 函数
def to_np(x):
    return x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值