前言
学习NLP领域知识时,先从情感分析入手。
在网上看到一篇方面级的情感分析综述性文章,觉得挺好的就找到其原来的论文进行阅读。
原文:《A Survey on Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges》
原文地址:https://arxiv.org/abs/2203.01054
注:内容大体是原文翻译,我只是做了小幅度的调整方便阅读。
摘要
基于方面的情感分析(ABSA),旨在分析和理解人们的意见在方面的水平,它一个重要的细粒度情感分析问题。为处理不同场景下的ABSA,引入了各种任务来分析不同的情感元素及其关系,主要从以下四点:
- 方面术语aspect term
- 方面类别aspect category
- 意见术语opinion term
- 情感极性sentiment polarity
早期的ABSA作品专注于单个情感元素,近年来的研究涉及多个元素的复合ABSA任务,以捕获更完整的方面级情感信息。然而,各种ABSA任务及其相应的解决方案的系统回顾仍然缺乏,因此本文作者的目的正是填补这个空缺。
作者为ABSA提供了一种新的分类方法,它从相关情绪元素的轴上组织现有的研究,重点介绍了复合ABSA任务的最新进展。从解决方案的角度,总结了ABSA的预训练语言模型的使用,它提高了ABSA的性能到一个新的阶段。此外,在跨领域/语言的情况下,建立更实用的ABSA系统的技术进行了讨论。最后回顾了一些新兴的主题,并讨论了一些开放的挑战,展望未来的ABSA的潜在方向。
1 介绍
1.1 起源
在线内容中的意见挖掘对广泛应用至关重要,如电商平台的客户情绪及原因分析,可优化产品与营销。但是庞大文本难以手动处理,需自动化框架分析非结构化文本中的意见,因此出现了情绪分析与意见挖掘研究的发展。
1.2 ABSA
传统的情感分析主要是在句子或文档级别进行预测,但是一段文字不一定只有一种情感,所以这种情感分析方法在实践中并不总是成立。
细粒度的方面级情感分析(ABSA)则关注实体或其某个方面的情感表达,如电商中的产品及其属性(价格、尺寸等)。它通过在方面级别构建全面的意见摘要,为下游应用提供细粒度的情感信息。
通常,ABSA的主要研究路线涉及识别各种方面级别的情感元素,即方面术语、方面类别、意见术语和情感极性。如下图所示,给定一个句子“The pizza is delicious.",相应的情感元素分别是“pizza”, “food”, “delicious”和“positive”,其中“pizza”和“delicious”是明确表达的,“food”和“positive”属于预定义的类别和情感集合。
1.3 单ASBA任务
ABSA的早期工作是分别识别每个情感元素。
- 方面词提取任务(aspect term extraction task):旨在提取给定文本中提到的所有方面词
- 方面情感分类任务(aspect sentiment classification task):预测句子中特定方面的情感极性
然而,要理解更完整的观点,单个情感元素的提取还远远不够,这不仅需要多个情感元素的提取,还需要识别它们之间的对应关系和依赖关系。
1.4 复合ABSA任务
近年来引入了几个新的ABSA任务以及相应的基准数据集,以便于对多个情感元素的联合预测进行研究。这些任务被称为复合ABSA任务,与仅涉及单个情感元素的单个ABSA任务形成对比,它提供了一个更清楚地了解所述的意见对象及其相关的意见表达是什么。
如:方面-意见对(AOPE)提取任务要求以复合形式提取方面及其相关联的意见项-(pizza,delicious)。
由于现有研究缺乏系统回顾,尤其对复合ABSA任务的进展不足,因此作者通过本文希望弥补这一空白。
1.5 预训练语言模型PLM
BERT和RoBERTa等预训练语言模型(PLM)的出现近年来为ABSA任务带来了实质性的改进。以PLM为骨干,ABSA模型的泛化能力和鲁棒性得到了显著提高。
例如:Li等人表明,使用一个简单的线性分类层堆叠在BERT之上,可以实现比以前专门设计的端到端ABSA任务的神经模型更具竞争力的性能。
虽然基于PLM构建ABSA模型已经变得无处不在,但由于其出版时间较短,在现有调查中没有讨论。因此,本文作者提供了一个深入的分析现有的基于PLM的ABSA模型,讨论他们的进步和局限性。
1.6 跨域传输与跨语言迁移
ABSA模型常假设训练与测试数据同分布。面对跨域或跨语言挑战,重新训练成本高且数据难获。跨域传输与跨语言迁移为ABSA系统提供了适应新环境的有效替代方案,无需大量额外标记数据,即可推广至不同领域和语言。
1.7 现有ABSA调研情况
现有ABSA调查多未涵盖最新进展、跨域/语言迁移及PLM影响。早期研究侧重非神经方法,近期则偏向深度学习,但多限于单一任务,在端到端ABSA任务上有一些开创性的工作。对于全面回顾ABSA任务、PLM影响及跨域/语言迁移的文献尚缺。
1.8 小结
本文的主要目标是从现代视角系统地回顾ABSA问题的进展和挑战。
具体而言,作者提供了一个新的分类ABSA组织各种ABSA的研究,从关注的情感元素的轴,重点是近年来的复合ABSA的研究任务。
沿着这个方向,作者讨论和总结了各种方法提出的每一个任务。
此外,作者还研究了利用预先训练的语言模型解决ABSA问题的潜力和局限性。
本文还对跨领域、跨语言ABSA的研究成果进行了总结。
最后,讨论了一些新的趋势和开放的挑战,旨在阐明这一领域的潜在未来方向。
2 背景
2.1 4种情感要素
一般的情感分析问题包括两个关键部分:目标和情感。
对于ABSA,目标可以用方面类别c或方面术语a来描述,而情感涉及详细的意见表达-意见术语o和一般的情感取向-情感极性p。这四个情感元素构成了ABSA研究的主线,也避免了混乱:
(1)aspect category—c:
方面类别c指的是一个实体所具有的独特方面,这些方面属于一个为特定领域预定义的类别集合C种。
例如,食物和服务可以是餐厅领域的方面类别。
(2)aspect term—a
方面术语a是明确出现在给定文本中的意见目标。
例如,“The pizza is delicious."中的“pizza”就是一个方面术语。
当目标被隐式表达时(例如,“它被定价过高了!”),我们可以将该方面术语表示为一个名为“null”的特殊术语。
(3)opinion term—o
意见术语o是意见持有人为表达其对目标的感情所作的表达。
例如,“The pizza is delicious."中的“delicious”就是一个意见术语。
(4)sentiment polarity—p
情感极性p描述了情绪在一个方面类别或一个方面术语上的方向,它通常属于积极、消极和中性。
2.2 ABSA定义
由上一节得到ABSA的4大要素,对ABSA定义如下:
ABSA是识别关注文本项的感兴趣的情感元素的问题,可以是单个情感元素,也可以是多个元素之间的依赖关系。
根据期望的输出是单个情感元素还是多个复合元素,可以将ABSA任务分类为单个ABSA任务和复合ABSA任务。
例如:
①方面术语提取(ATE)是一个单一的ABSA任务,其目的是提取给定句子的所有方面术语;
②方面-意见对抽取(AOPE)任务是一个复合ABSA任务,因为它提取所有(a,o)对。
从这个角度来看,作者提出了一个新的分类ABSA,系统地组织现有的作品,从有关的情感元素的轴。图2概述了不同的ABSA任务和每个任务的代表性方法。
2.3 模型范式
以下几种主流的NLP建模范式通常用于ABSA任务:序列级分类(SeqClass)、令牌级分类(TokenClass)、机器阅读理解(MRC)和序列到序列建模(Seq 2Seq)。
每个范例表示一个通用的计算框架,用于处理特定的输入和输出格式。因此,通过将任务制定为特定格式,可以使用相同的范式来解决多个任务。
【注:这张图在我看的论文没有,从别的博主那看到的,感觉同一篇论文里,他们看的跟我看的有点微弱的出入:基于aspect的情感分析综述 论文翻译笔记 A Survey on Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges-CSDN博客】
除了这四种以端到端方式处理任务的统一范例之外,一些复杂的ABSA任务可以通过管道(Pipeline)范例来解决,该范例通过多个模型来进行最终预测。
2.3.1 Sequence-level Classification(SeqClass)
对于序列级分类,模型通常首先将输入文本X馈送到编码器Enc(·)中以提取任务特定的特征,然后是分类器CLS(·)以预测标签Y,Y可以表示为One-hot或multi-hot向量(分别用于单标签和多标签分类)。
①.在深度学习时代,编码器Enc(·)可以是卷积网络,递归网络或用于提取上下文特征的transformer。
②.在某些情况下,输入文本X可以包含多个部分。
例如,对于方面情感分类任务,句子和特定方面都被视为输入。然后编码器不仅需要提取有用的特征,还需要捕获输入之间的交互。
③分类器CLS(·)通常被实现为具有池化层的多层感知器来进行分类。
2.3.2 Token-level Classification (TokenClass)
序列标记将标签分配给输入文本中的每个标记。
① 用编码器Enc(·)将输入文本编码成上下文化特征;
② 用解码器Dec(·)来预测标签y1,.,yn。