沉岛思想(BFS)-朋友圈思想(并查集)

在这里插入图片描述

本篇博客旨在记录自已笔记,同时希望可给小伙伴一些帮助。本人也是算法小白,水平有限,如果文章中有什么错误之处,希望小伙伴们可以在评论区指出来,共勉 💪。

沉岛思想:

题目: 给定一个包含了一些 0 和 1的非空二维数组 grid , 一个 岛屿 是由四个方向 (水平或垂直) 的 1 (代表土地) 构成的组合。你可以假设二维矩阵的四个边缘都被水包围着。

找到给定的二维数组中最大的岛屿面积。(如果没有岛屿,则返回面积为0。)

示例 1:

[[0,0,0,0,0,0,0,1,1,1,0,0,0],

[0,1,1,0,1,0,0,0,0,0,0,0,0],

[0,1,0,0,1,1,0,0,1,0,1,0,0],

[0,1,0,0,1,1,0,0,1,1,1,0,0],

[0,0,0,0,0,0,0,0,0,0,1,0,0],

[0,0,0,0,0,0,0,1,1,1,0,0,0],

[0,0,0,0,0,0,0,1,1,0,0,0,0]]

解题思路:

对于上面这个给定矩阵应返回 6。注意答案不应该是11,因为岛屿只能包含水平或垂直的四个方向的‘1’。加粗的部分就是最大面积(上下左右相邻)。

我理解的这道题就像扫雷,所有相连的1的土地的数量和就是最大面积。

需要注意的是:

要求出所有相连的1的土地的max最大值

为了避免重复访问,把搜索过的1设置为0,这就是沉岛思想。

对每一个为1的土地,从上下左右4个方向搜索值也为1的土地,以及与这些土地相连的土地。

  1. 用两个数组来实现四个方向的搜索:
d1[]={1,-1,0,0};

d2[]={0,0,1,-1};

int x=i+d1[k], y=j+d2[k]; (k=0,1,2,3)

area+=dfs(grid,x,y)
  1. 也可直接进行加减
area+=dfs(grid, i+1, j );

area+=dfs(grid, i-1, j );

area+=dfs(grid , i, j+1 );

area+=dfs(grid, i, j-1 );

代码实现:

 public static int maxAreaOfIsland(int[][] grid) {

		 int max=0;
		 for(int i=0;i<grid.length;i++){
			 for(int j=0;j<grid[i].length;j++){
				 if(grid[i][j]==1)
					 max=Math.max(max, dfs(grid,i,j));//求最大面积
			 }
		 }
		 return max;
	    }
	 public static int dfs(int[][] grid,int i,int j){
	    //边界处理
		 if(i<0||j<0||i>=grid.length||j>=grid[i].length||grid[i][j]==0){
			 return 0;
		 }
		 int area=1;
		 grid[i][j]=0;//避免重复访问
		 int d1[]={0,0,1,-1};//四个方向
		 int d2[]={1,-1,0,0};
		 for(int k=0;k<4;k++){
			 int x=d1[k]+i,y=d2[k]+j;
			 area+=dfs(grid, x, y);//递归深度优先搜索
		 }
		 return area;
	 }
}

朋友圈思想

题目: 班上有 N 名学生。其中有些人是朋友,有些则不是。他们的友谊具有是传递性。如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友。所谓的朋友圈,是指所有朋友的集合。

给定一个 N * N 的矩阵 M,表示班级中学生之间的朋友关系。如果M[i][j] = 1,表示已知第 i 个和 j 个学生互为朋友关系,否则为不知道。你必须输出所有学生中的已知的朋友圈总数。

解题思路: 这是一个典型的并查集的问题,将朋友圈中,是朋友的人加入一个并查集。在初始情况下,所有人都不是朋友,则朋友圈的数量就是人的总数,每当检测到两个朋友不在一个并查集,那么就将其加入一个并查集,然后朋友圈的总数减一。

代码实现:

class Solution {
    List<Integer> p = new ArrayList<>();
    public int findCircleNum(int[][] M) {
        int n = M.length;
        int res = n;


        for(int i = 0; i < n; i++){
            p.add(i);
        }

        for(int i = 1; i < n; i++) {
            for(int j = 0; j < i; j++) {
                if(M[i][j] == 1) {
                    if(find(i) != find(j)) {
                        res --;
                        p.set(find(i), find(j));
                    }
                }
            }
        }

        return res;

    }

    public int find(int x) {
        if(x != p.get(x)){
            p.set(x, find(p.get(x)));
        }

        return p.get(x);
    }
}

最后

对各位小伙伴有帮助的话,希望可以点赞❤️+收藏⭐,谢谢各位大佬~~🙌🙌🙌

  • 13
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 10
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乌云暮年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值