Friend Circles
班上有 N 名学生。其中有些人是朋友,有些则不是。他们的友谊具有是传递性。如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友。所谓的朋友圈,是指所有朋友的集合。
给定一个 N * N 的矩阵 M,表示班级中学生之间的朋友关系。如果Mi = 1,表示已知第 i 个和 j 个学生互为朋友关系,否则为不知道。你必须输出所有学生中的已知的朋友圈总数。
示例 1:
输入:
[[1,1,0],
[1,1,0],
[0,0,1]]
输出: 2
说明:已知学生0和学生1互为朋友,他们在一个朋友圈。
第2个学生自己在一个朋友圈。所以返回2。
示例 2:
输入:
[[1,1,0],
[1,1,1],
[0,1,1]]
输出: 1
说明:已知学生0和学生1互为朋友,学生1和学生2互为朋友,所以学生0和学生2也是朋友,所以他们三个在一个朋友圈,返回1。
注意:
- N 在[1,200]的范围内。
- 对于所有学生,有Mi = 1。
- 如果有Mi = 1,则有Mj = 1。
分析
这道题DFS和BFS都可以解决,对于学生A,遍历他的所有朋友,再遍历他的朋友的朋友,这样就得到包含学生A的最大朋友圈。之后重复上面的这个操作就好了,即可得到不同的朋友圈个数
代码
class Solution {
//DFS+BFS
public int findCircleNum(int[][] M) {
int res = 0;
boolean[] visited = new boolean[M.length];
Queue<Integer> queue = new LinkedList<>();
for(int i=0;i<M.length;i++){
if(!visited[i]){
DFS(M,i,visited);
/*
queue = new LinkedList<>();
queue.add(i);
BFS(M,queue,visited);
*/
res++;
}
}
return res;
}
//DFS解法
private void DFS(int[][] M,int k,boolean[] visited){
visited[k]=true;
for(int i=0;i<M.length;i++){
if(M[k][i]==1&&!visited[i]){
DFS(M,i,visited);
}
}
}
//BFS解法
private void BFS(int[][] M,Queue<Integer> queue,boolean[] visited){
while(!queue.isEmpty()){
int k = queue.poll();
visited[k]=true;
for(int i=0;i<M.length;i++){
if(!visited[i]&&M[k][i]==1){
queue.add(i);
}
}
}
}
}