np.dot()函数的用法详解

这篇文章主要介绍了np.dot()函数的用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

基本简介

dot函数为numpy库下的一个函数,主要用于矩阵的乘法运算,其中包括:向量内积、多维矩阵乘法和矩阵与向量的乘法。

1. 向量内积

向量其实是一维的矩阵,两个向量进行内积运算时,需要保证两个向量包含的元素个数是相同的。

例1:

1

import numpy as np

2

3

x = np.array([1, 2, 3, 4, 5, 6, 7])

4

y = np.array([2, 3, 4, 5, 6, 7, 8])

5

result = np.dot(x, y)

6

print(result)

输出结果:

168

计算过程就是将向量中对应元素相乘,再相加所得。即普通的向量乘法运算。

2. 矩阵乘法运算

两个矩阵(x, y)如果可以进行乘法运算,需要满足以下条件:

x为 m×n 阶矩阵,y为 n×p 阶矩阵,

则相乘的结果 result 为 m×p 阶矩阵。

例2:

01

import numpy as np

02

03

x = np.array([[1, 2, 3],

04

[3, 4, 4]])

05

y = np.array([[0, 1, 1, 1],

06

[1, 2, 0, 1],

07

[0, 0, 2, 1]])

08

result = np.dot(x, y)

09

10

print(result)

11

print("x阶数:" + str(x.shape))

12

print("y阶数:" + str(y.shape))

13

print("result阶数:" + str(result.shape))

结果为:

[[ 2 5 7 6]
[ 4 11 11 11]]
x阶数:(2, 3)
y阶数:(3, 4)
result阶数:(2, 4)

dot(x, y)不等于dot(y, x),矩阵乘法不满足交换律

例3:

01

import numpy as np

02

03

x = np.array([[1, 2],

04

[3, 4]])

05

y = np.array([[2, 2],

06

[1, 2]])

07

result1 = np.dot(x, y)

08

result2 = np.dot(y, x)

09

10

print("result1 = " + str(result1))

11

print("result2 = " + str(result2))

结果为:

result1 = [[ 4 6]
[10 14]]
result2 = [[ 8 12]
[ 7 10]]

如果不满足运算前提,都不可以运算。例2的dot(y,x)不满足运算条件,因此运算会报错。

例4:

01

import numpy as np

02

03

x = np.array([[1, 2, 3],

04

[3, 4, 4]])

05

y = np.array([[0, 1, 1, 1],

06

[1, 2, 0, 1],

07

[0, 0, 2, 1]])

08

result = np.dot(y, x)

09

10

print(result)

结果为:

Traceback (most recent call last):
File "numpy1.py", line 96, in <module>
result = np.dot(y,x)
File "<__array_function__ internals>", line 6, in dot
ValueError: shapes (3,4) and (2,3) not aligned: 4 (dim 1) != 2 (dim 0)

3. 矩阵与向量乘法

矩阵x为m×n阶,向量y为n阶向量,则矩阵x和向量y可以进行乘法运算,结果为m阶向量。进行运算时,会首先将后面一项进行自动转置操作,之后再进行乘法运算。

例5:

01

import numpy as np

02

03

x = np.array([[1, 2, 3],

04

[3, 4, 4]])

05

y = np.array([1, 2, 3])

06

result = np.dot(x, y)

07

08

print(result)

09

print("x阶数:" + str(x.shape))

10

print("y阶数:" + str(y.shape))

11

print("result阶数:" + str(result.shape))

结果为:

[14 23]
x阶数:(2, 3)
y阶数:(3,)
result阶数:(2,)

例6:仍然不满足交换律

view source

https://cdn.ruohu.com/51sjk/assets/syntax/scripts/clipboard.swf

print?

01

import numpy as np

02

03

x = np.array([[1, 2, 3],

04

[3, 4, 4],

05

[0, 1, 1]])

06

y = np.array([1, 2, 3])

07

result1 = np.dot(x, y) # 1×1 + 2×2 + 3×3 = 14(result1的第一个元素)

08

result2 = np.dot(y, x) # 1×1 + 2×3 + 3×0 = 7 (result2的第一个元素)

09

10

print("result1 = " + str(result1))

11

print("result2 = " + str(result2))

结果为:

result1 = [14 23 5]
result2 = [ 7 13 14]

以上就是本文的全部内容,希望对大家的学习有所帮助,

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值