【数据结构与算法】二叉排序树&平衡二叉树&哈夫曼树

🔥 本文由 程序喵正在路上 原创,CSDN首发!
💖 系列专栏:数据结构与算法
🌠 首发时间:2022年11月7日
🦋 欢迎关注🖱点赞👍收藏🌟留言🐾
🌟 一以贯之的努力 不得懈怠的人生

树的存储结构

双亲表示法(顺序存储)

双亲表示法:每个结点中保存指向双亲的 “指针”,根节点固定存储在 0 0 0 − 1 -1 1 表示没有双亲

#define MAX_TREE_SIZE 100		//树中最多结点数

//树的结点定义
typedef struct{
	ElemType data;				//数据元素
	int parent;					//双亲位置域
}PTNode;

//树的类型定义
typedef struct{							
	PTNode nodes[MAX_TREE_SIZE];		//双亲表示
	int n;								//结点数
}PTree;

优点:查找指定结点的双亲很方便

缺点:查找指定结点的孩子只能从头遍历

孩子表示法(顺序+链式存储)

孩子表示法:顺序存储每个节点,每个结点中保存孩子链表头指针

struct CTNode{
	int child;				//孩子结点在数组中的位置
	struct CTNode *next;	//下一个孩子
};

typedef struct{
	ElemType data;
	struct CTNode *firstChild;		//第一个孩子
}CTBox;

typedef struct{
	CTBox nodes[MAX_TREE_SIZE];
	int n, r;		//结点数和根的位置
}CTree;

孩子兄弟表示法(链式存储)

//孩子兄弟表示法
typedef struct CSNode{
	ElemType data;								//数据域
	struct CSNode *firstchild, *nextsibling;	//第一个孩子和右兄弟指针
}CSNode, *CSTree;

森林和二叉树的转换

森林是 m ( m ≥ 0 ) m (m\geq0) m(m0) 棵互不相交的树的集合

在这里插入图片描述

本质:用二叉链表存储森林,左孩子右兄弟

树和森林的遍历

树的先根遍历

若树非空,先访问根结点,再依次对每棵子树进行先根遍历

//树的先根遍历
void PreOrder(TreeNode *R) {
	if (R) {
		visit(R);	//访问根结点
		while(R还有下一个子树T)
			PreOrder(T);	//先根遍历下一棵子树
	}
}

树的后根遍历

若树非空,先依次对每棵子树进行后根遍历,最后再访问根结点

//树的后根遍历
void PostOrder(TreeNode *R) {
	if (R) {
		while(R还有下一个子树T)
			PostOrder(T);	//后根遍历下一棵子树
		visit(R);	//访问根结点
	}
}

树的后根遍历与这棵树相应二叉树的中序序列相同

树的层次遍历

步骤:

  1. 若树非空,则根结点入队
  2. 若队列非空,队头元素出队并访问,同时将该元素的孩子依次入队
  3. 重复第 2 2 2 步直到队列为空

树的层次遍历也可以称为广度优先遍历,树的先根和后根遍历也可以称为深度优先遍历

森林的先序遍历

森林是 m ( m ≥ 0 ) m (m\geq0) m(m0) 棵互不相交的树的集合。每棵树去掉根结点后,其各个子树又组成森林

若森林非空,则按照如下规则进行遍历:

  1. 访问森林中第一棵树的根结点
  2. 先序遍历第一个棵树中根结点的子树森林
  3. 先序遍历除去第一棵树之后剩余的树构成的森林

森林的先序遍历效果等同于依次对每个树进行先根遍历

如果我们先将森林转换为二叉树,那森林的先序遍历也等同于对应二叉树的先序遍历

森林的中序遍历

若森林非空,则按照如下规则进行遍历:

  1. 中序遍历第一个棵树中根结点的子树森林
  2. 访问森林中第一棵树的根结点
  3. 中序遍历除去第一棵树之后剩余的树构成的森林

森林的中序遍历效果等同于依次对每个树进行后根遍历

如果我们先将森林转换为二叉树,那森林的中序遍历也等同于对应二叉树的中序遍历

二叉排序树

定义

二叉排序树,又称为二叉查找树( B S T BST BST B i n a r y   S e a r c h    T r e e Binary \ Search \;Tree Binary SearchTree

一棵二叉树或者是空二叉树,或者是具有如下性质的二叉树:

  • 左子树上所有结点的关键字均小于根结点的关键字
  • 右子树上所有结点的关键字均大于根结点的关键字
  • 左子树和右子树又各是一棵二叉排序树

我们可以发现,左子树结点值 < 根结点值 < 右子树结点值;同时,如果我们对一棵二叉排序树进行中序遍历,就可以得到一个递增的有序序列

二叉排序树的查找

若树非空,目标值与根结点的值比较:

  • 如果相等,则查找成功
  • 如果小于根结点,则在左子树上查找,否则在右子树上查找
  • 查找成功,返回结点指针;查找失败则返回 N U L L NULL NULL
//二叉排序树结点
typedef struct BSTNode{
	int key;
	struct BSTNode *lchild, *rchild;
}BSTNode, *BSTree;

//在二叉排序树中查找值为 key 的结点
BSTNode *BST_Search(BSTree T, int key) {
	while (T && key != T->key) {	//若树空或等于根结点值,则结束循环
		if (key < T->key) T = T->lchild;	//小于,则在左子树上查找
		else T = T->rchild;					//大于,则在右子树上查找
	}
	return T;
}

非递归:最坏空间复杂度 O ( 1 ) O(1) O(1)

//在二叉排序树中查找值为 key 的结点(递归实现)
BSTNode *BST_Search(BSTree T, int key) {
	if (!T) return NULL;			//查找失败
	
	if (key == T->key) return T;	//查找成功
	else if (key < T->key) return BST_Search(T->lchild, key);	
	else return BST_Search(T->rchild, key);
}

递归:最坏空间复杂度 O ( h ) O(h) O(h) h h h 为树的高度

二叉排序树的插入

若原二叉排序树为空,则直接插入结点;否则,若关键字 k k k 小于根结点值,则插入到左子树中;若关键字 k k k 大于根结点值,则插入到右子树中

//在二叉排序树插入关键字为 k 的新结点(递归实现)
int BST_Insert(BSTree &T, int k) {
	if (!T) {		//原树为空
		T = (BSTree)malloc(sizeof(BSTNode));
		T->key = k;
		T->lchild = T->rchild = NULL;
		return 1;				//返回 1, 插入成功
	} else if (k == T->key) {	//树中存在相同关键字的结点, 插入失败
		return 0;
	} else if (k < T->key) {	//小于, 插入到左子树
		return BST_Insert(T->lchild, k);
	} else {					//大于, 插入到右子树
		return BST_Insert(T->rchild, k);
	}
}

最坏空间复杂度为 O ( h ) O(h) O(h)

二叉排序树的构造

//按照 str[] 中的关键字序列建立二叉排序树
void Creat_BST(BSTree &T, int str[], int n) {
	T = NULL;		//初始时为空树
	int i = 0;
	while (i < n) {		//依次将每个关键字插入到二叉排序树中
		BST_Insert(T, str[i]);
		++i;
	}
}

不同的关键字序列可能得到同款二叉排序树,也可能得到不同款二叉排序树

二叉排序树的删除

先搜索找到目标结点:

  1. 如果被删除结点 z z z 是叶子结点,则直接删除,不会破坏二叉排序树的性质
  2. 如果被删除结点 z z z 只有一棵左子树或右子树,则让 z z z 的子树成为 z z z 父结点的子树,替代 z z z 的位置
  3. 如果 z z z 有左、右两颗子树,则令 z z z 的直接后继(或直接前驱)替代 z z z ,然后从二叉排序树中删去这个直接后继(或直接前驱),这样就转换成了第一或第二种情况

3 3 3 种情况中的直接后继和直接前驱也就是 z z z 的中序后继和中序前驱, z z z 的后继为 z z z 的右子树中最左下的结点(该结点一定没有左子树), z z z 的前驱为 z z z 的左子树中最右下的结点(该结点一定没有右子树)

查找效率分析

查找长度 —— 在查找运算中,需要对比关键字的次数称之为查找长度,反映了查找操作的时间复杂度

若树高 h h h,找到最下层的一个结点需要对比 h h h

最好情况: n n n 个结点的二叉树最小高度为 ⌊ l o g 2 n + 1 ⌋ \lfloor log_2{n} + 1 \rfloor log2n+1,平均查找长度为 O ( l o g 2 n ) O(log_2{n}) O(log2n)

最坏情况:每个结点只有一个分支,树高 h h h 等于结点数 n n n,平均查找长度为 O ( n ) O(n) O(n)

查找成功的平均查找长度 A S L ASL ASL A v e r a g e   S e a r c h   L e n g t h Average \ Search \ Length Average Search Length) 计算方式例子:

在这里插入图片描述

也就是( [ 每层结点数乘以每层结点查找长度 ] 之和)/ 总结点数

查找失败的平均查找长度 A S L ASL ASL A v e r a g e   S e a r c h   L e n g t h Average \ Search \ Length Average Search Length) 计算方式:

平衡二叉树

定义

平衡二叉树( B a l a n c e d   B i n a r y   T r e e Balanced \ Binary \ Tree Balanced Binary Tree),简称平衡树( A V L AVL AVL树)—— 树上任一结点的左子树和右子树的高度之差不超过 1 1 1

结点的平衡因子 = = = 左子树高 − - 右子树高,平衡二叉树结点的平衡因子的值只可能是 − 1 、 0 -1、0 10 或者 1 1 1,只要有任一结点的平衡因子的绝对值大于 1 1 1,就不是平衡二叉树

//平衡二叉树结点
typedef struct AVLNode{
	int key; 		//数据域
	int balance;	//平衡因子
	struct AVLNode *lchild, *rchild;
}AVLNode, *AVLTree;

平衡二叉树的插入

在二叉排序树中插入新结点后,该如何保持平衡?

查找路径上的所有结点都有可能受到影响,所以我们从插入点往回找到第一个不平衡的结点,调整以该结点为根的子树,每次调整的对象都是 “最小不平衡子树”

在插入操作中,我们只需要将最小不平衡子树调整平衡,则其他祖先结点都会恢复平衡

调整最小不平衡子树

  • L L LL LL:在 A A A 的左孩子的左子树中插入导致不平衡
  • R R RR RR:在 A A A 的右孩子的右子树中插入导致不平衡
  • L R LR LR:在 A A A 的左孩子的右子树中插入导致不平衡
  • R L RL RL:在 A A A 的右孩子的左子树中插入导致不平衡

调整最小不平衡子树 —— LL:

假设最小不平衡子树如下图:

在这里插入图片描述

L L LL LL 平衡旋转(右单旋转)。由于在结点 A A A 的左孩子 ( L L L)的左子树( L L L)上插入了新结点, A A A 的平衡因子由 1 1 1 增至 2 2 2,导致以 A A A 为根的子树失去平衡,需要一次向右的旋转操作。将 A A A 的左孩子 B B B 向右上旋转代替 A A A 成为根结点,将 A A A 结点向右下旋转成为 B B B 的右子树的根结点,而 B B B 的原右子树则作为 A A A 结点的左子树

调整最小不平衡子树 —— RR:

R R RR RR 平衡旋转(右单旋转)。由于在结点 A A A 的右孩子 ( R R R)的右子树( R R R)上插入了新结点, A A A 的平衡因子由 − 1 -1 1 增至 − 2 -2 2,导致以 A A A 为根的子树失去平衡,需要一次向左的旋转操作。将 A A A 的右孩子 B B B 向左上旋转代替 A A A 成为根结点,将 A A A 结点向左下旋转成为 B B B 的左子树的根结点,而 B B B 的原左子树则作为 A A A 结点的右子树

右旋和左旋代码思路:

右旋:假设指针 f f f 指向最小不平衡子树的根, p p p 指向根的左子树,那么 f f f 向右下旋转, p p p 向右上旋转,其中 f f f 是爹, p p p 为左孩子, g f gf gf f f f 的爹

在这里插入图片描述

f->lchild = p->rchild;	
p->rchild = f;
gf->lchild/rchild = p;

左旋:假设指针 f f f 指向最小不平衡子树的根, p p p 指向根的右子树,那么 f f f 向左下旋转, p p p 向左上旋转,其中 f f f 是爹, p p p 为左孩子, g f gf gf f f f 的爹

在这里插入图片描述

f->rchild = p->lchild;	
p->lchild = f;
gf->lchild/rchild = p;

调整最小不平衡子树 —— LR:

在这里插入图片描述

L R LR LR 平衡旋转(先左后右双旋转)。由于在结点 A A A 的左孩子 ( L L L)的右子树( R R R)上插入了新结点, A A A 的平衡因子由 1 1 1 增至 2 2 2,导致以 A A A 为根的子树失去平衡,需要进行两次旋转操作,先左旋转后再右旋转。先将 A A A 的左孩子 B B B 的右子树的根结点 C C C 向左上旋转提升到 B B B 结点的位置,然后再把该 C C C 结点向右上旋转提升到 A A A 结点的位置

调整最小不平衡子树 —— RL:

在这里插入图片描述

R L RL RL 平衡旋转(先右后左双旋转)。由于在结点 A A A 的右孩子 ( R R R)的左子树( L L L)上插入了新结点, A A A 的平衡因子由 − 1 -1 1 增至 − 2 -2 2,导致以 A A A 为根的子树失去平衡,需要进行两次旋转操作,先右旋转后再左旋转。先将 A A A 的右孩子 B B B 的左子树的根结点 C C C 向右上旋转提升到 B B B 结点的位置,然后再把该 C C C 结点向左上旋转提升到 A A A 结点的位置

注意:

只有左孩子才能右上旋,只有右孩子才能左上旋

查找效率分析

若树高为 h h h,则最坏情况下,查找一个关键字最多需要对比 h h h 次,即查找操作的时间复杂度不可能超过 O ( h ) O(h) O(h)

平衡二叉树 —— 树上任一结点的左子树和右子树的高度之差不超过 1 1 1

我们假设以 n h n_h nh 表示深度为 h h h 的平衡树中含有的最少结点数,则有 n 0 = 0 , n 1 = 1 , n 2 = 2 n_0 = 0, n_1= 1, n_2 = 2 n0=0,n1=1,n2=2,并且有 n h = n h − 1 + n h − 2 + 1 n_h = n_{h-1} + n_{h-2} + 1 nh=nh1+nh2+1

可以证明含有 n n n 个结点的平衡二叉树的最大深度为 O ( l o g 2 n ) O(log_2{n}) O(log2n),平衡二叉树的平均查找长度为 O ( l o g 2 n ) O(log_2{n}) O(log2n)

哈夫曼树

带权路径长度

结点的权:有某种现实含义的数值(比如表示结点的重要性等)

结点的带权路径长度:从树的根到该结点的路径长度(经过的边数)与该结点上权值的乘积

树的带权路径长度:树中所有叶子结点的带权路径长度之和( W P L , W e i g h t e d   P a t h   L e n g t h WPL, Weighted \ Path \ Length WPL,Weighted Path Length

W P L = ∑ i = 1 n w i l i WPL = \sum_{i=1}^{n}w_i l_i WPL=i=1nwili

哈夫曼树

在含有 n n n 个带权叶结点的二叉树中,其中带权路径长度( W P L WPL WPL)最小的二叉树称为哈夫曼树,也称为最优二叉树

哈夫曼树的构造

给定 n n n 个权值分别为 w 1 , w 2 , . . . , w n w_1, w_2,..., w_n w1,w2,...,wn 的结点,构造哈夫曼树的算法描述如下:

  1. 将这 n n n 个结点分别作为 n n n 棵仅含一个结点的二叉树,构成森林 F F F
  2. 构造一个新结点,从 F F F 中选取两棵根结点权值最小的树作为新结点的左右子树,并且将新结点的权值置为左、右子树上根结点的权值之和
  3. F F F 中删除刚才选出的两棵树,同时将新得到的树加入 F F F
  4. 重复步骤 2 2 2 3 3 3,直至 F F F 中只剩下一棵树为止

哈夫曼树特点:

  • 每个初始结点最终都称为叶结点,且权值越小的结点到根结点的路径长度越大
  • 哈夫曼树的结点总数为 2 n − 1 2n-1 2n1
  • 哈夫曼树中不存在度为 1 1 1 的结点
  • 哈夫曼树并不唯一,但 W P L WPL WPL 必然相同且为最优

哈夫曼编码

固定长度编码 —— 每个字符用相等长度的二进制位表示

可变长度编码 —— 允许对不同字符用不等长的二进制位表示

若没有一个编码是另一个编码的前缀,则称这样的编码为前缀编码,前缀编码解码无歧义,非前缀编码解码有歧义

由哈夫曼树得到哈夫曼编码 —— 字符集中的每个字符作为一个叶子结点,每个字符出现的频度作为结点的权值,根据上面介绍的方法构造哈夫曼树

哈夫曼树不唯一,因此哈夫曼编码也不唯一

哈夫曼编码可用于数据压缩

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序喵正在路上

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值