🔥 本文由 程序喵正在路上 原创,CSDN首发!
💖 系列专栏:数据结构与算法
🌠 首发时间:2022年11月8日
🦋 欢迎关注🖱点赞👍收藏🌟留言🐾
🌟 一以贯之的努力 不得懈怠的人生
图的定义
图 G G G 由顶点集 V V V 和边集 E E E 组成,记为 G = ( V , E ) G=(V, E) G=(V,E),其中 V ( G ) V(G) V(G) 表示图 G G G 中顶点的有限非空集; E ( G ) E(G) E(G) 表示图 G G G 中顶点之间的关系(边)集合。若 V = { v 1 , v 2 , . . . , v n } V=\{v_1, v_2, ... , v_n\} V={v1,v2,...,vn},则用 ∣ V ∣ |V| ∣V∣ 表示图 G G G 中顶点的个数,也称为图 G G G 的阶, E = { ( u , v ) ∣ u ∈ V , v ∈ V } E = \{(u, v) | u \in V, v \in V\} E={(u,v)∣u∈V,v∈V}, 用 ∣ E ∣ |E| ∣E∣ 表示图 G G G 中边的条数
注意:线性表可以是空表,树可以是空树,但图不可以是空图,即 V V V 一定是非空集,但 E E E 可以是空集
有向图
若 E E E 是有向边(也称弧)的有限集合时,则图 G G G 为有向图。弧是顶点的无序对,记为 < v , w > <v, w> <v,w>,其中 v 、 w v、w v、w 是顶点, v v v 称为弧尾, w w w 称为弧头, v 、 w v、w v、w 称为从顶点 v v v 到顶点 w w w 的弧,也称为 v v v 邻接到 w w w,或 w w w 邻接自 v v v。 < v , w > ≠ < w , v > <v, w>\ \neq\ <w, v> <v,w> = <w,v>
上图可以表示为
G
1
=
(
V
1
,
E
1
)
G_1 = (V_1, E_1)
G1=(V1,E1)
V
1
=
{
A
,
B
,
C
,
D
,
E
}
V_1 = \{A, B, C, D, E\}
V1={A,B,C,D,E}
E
1
=
{
<
A
,
B
>
,
<
A
,
C
>
,
<
A
,
D
>
,
<
A
,
E
>
,
<
B
,
A
>
,
<
B
,
C
>
,
<
B
,
E
>
,
<
C
,
D
>
}
E_1 = \{<A, B>, <A, C>, <A, D>, <A, E>, <B, A>, <B, C>, <B, E>, <C, D>\}
E1={<A,B>,<A,C>,<A,D>,<A,E>,<B,A>,<B,C>,<B,E>,<C,D>}
无向图
若 E E E 是无向边(简称边)的有限集合时,则图 G G G 为无向图。边是顶点的无序对,记为 ( v , w ) (v, w) (v,w) 或 ( w , v ) (w, v) (w,v),因为 ( v , w ) = ( w , v ) (v, w) = (w, v) (v,w)=(w,v),其中 v 、 w v、w v、w 是顶点。可以说顶点 w w w 和顶点 v v v 互为邻接点。边 ( v , w ) (v, w) (v,w) 依附于顶点 w w w 和 v v v,或者说边 ( v , w ) (v, w) (v,w) 和顶点 v 、 w v、w v、w 相关联
上图可以表示为
G
2
=
(
V
2
,
E
2
)
G_2 = (V_2, E_2)
G2=(V2,E2)
V
2
=
{
A
,
B
,
C
,
D
,
E
}
V_2 = \{A, B, C, D, E\}
V2={A,B,C,D,E}
E
2
=
{
(
A
,
B
)
,
(
B
,
D
)
,
(
B
,
E
)
,
(
C
,
D
)
,
(
C
,
E
)
,
(
D
,
E
)
}
E_2 = \{(A, B), (B, D), (B, E), (C, D), (C, E), (D, E)\}
E2={(A,B),(B,D),(B,E),(C,D),(C,E),(D,E)}
简单图、多重图
简单图 —— 不存在重复边;不存在顶点到自身的边
多重图 —— 图 G G G 中某两个结点之间的边数多于一条,又允许顶点通过同一条边和自己关联,则 G G G 为多重图
简单图和多重图也有无向图和有向图之分
顶点的度、入度、出度
对于无向图:顶点 v v v 的度是指依附于该顶点的边的条数,记为 T D ( v ) TD(v) TD(v)
在具有 n n n 个顶点、 e e e 条边的无向图中, ∑ i = 1 n T D ( v i ) = 2 e \sum_{i=1}^{n}TD(v_i) = 2e ∑i=1nTD(vi)=2e,即无向图的全部顶点的度的和等于边数的 2 2 2 倍
对于有向图:
- 入度是以顶点 v v v 为终点的有向边的数目,记为 I D ( v ) ID(v) ID(v)
- 出度是以顶点 v v v 为起点的有向边的数目,记为 O D ( v ) OD(v) OD(v)
- 顶点 v v v 的度等于其入度和出度之和,即 T D ( v ) = I D ( v ) + O D ( v ) TD(v) = ID(v) + OD(v) TD(v)=ID(v)+OD(v)
在具有 n n n 个顶点、 e e e 条边的有向图中, ∑ i = 1 n I D ( v i ) = ∑ i = 1 n O D ( v i ) = e \sum_{i=1}^{n}ID(v_i) = \sum_{i=1}^{n}OD(v_i) = e ∑i=1nID(vi)=∑i=1nOD(vi)=e
顶点-顶点的关系描述
- 路径 —— 顶点 V p V_p Vp 到顶点 V q V_q Vq 之间的一条路径是指顶点序列 V p , V i 1 , V i 2 , … , V i m , V q V_p, V_{i_1}, V_{i_2}, \dots , V_{i_m}, V_q Vp,Vi1,Vi2,…,Vim,Vq
- 回路 —— 第一个顶点和最后一个顶点相同的路径称为回路或者环
- 简单路径 —— 在路径序列中,顶点不重复出现的路径称为简单路径
- 简单回路 —— 除第一个顶点和最后一个顶点外,其余顶点不重复出现的回路称为简单回路
- 路径长度 —— 路径上边的数目
- 点到点的距离 —— 从顶点 u u u 出发到顶点 v v v 的最短路径若存在,则此路径的长度称之为从 u u u 到 v v v 的距离;若从 u u u 到 v v v 根本不存在路径,则记该距离为无穷( ∞ \infty ∞)
- 无向图中,若从顶点 v v v 到顶点 w w w 有路径存在,则称 v v v 和 w w w 是连通的
- 有向图中,若从顶点 v v v 到顶点 w w w和从顶点 w w w 到顶点 v v v 之间都有路径,则称这两个顶点是强连通的
连通图、强连通图
若无向图 G G G 中任意两个顶点都是连通的,则称图 G G G 为连通图,否则称为非连通图
若有向图中任意一对顶点都是强连通的,则称此图为强连通图
对于 n n n 个顶点的无向图 G G G:
- 若 G G G 是连通图,则最少有 n − 1 n-1 n−1 条边
- 若 G G G 是非连通图,则最多有 C n − 1 2 C_{n-1}^{2} Cn−12 条边
对于 n n n 个顶点的有向图 G G G:
- 若 G G G 是强连通图,则最少有 n n n 条边(形成回路)
子图
设有两个图 G = ( V , E ) G = (V, E) G=(V,E) 和 G ′ = ( V ′ , E ′ ) G' = (V', E') G′=(V′,E′),若 V ′ V' V′ 是 V V V 的子集,且 E ′ E' E′ 是 E E E 的子集,则称 G ′ G' G′ 是 G G G 的子图
若有满足 V ( G ′ ) = V ( G ) V(G') = V(G) V(G′)=V(G) 的子图 G ′ G' G′,则称其为 G G G 的生成子图,也就是比如说一个子图中有原图的所有点,但少了一些边,那么可以说这个子图是原图的生成子图
连通分量、强连通分量
无向图中的极大连通子图称为连通分量,其中,极大连通子图是指子图必须连通,且包含尽可能多的顶点和边
有向图中的极大强连通子图称为有向图的强连通分量,其中,极大强连通子图是指子图必须强连通,同时保留尽可能多的边
生成树
连通图的生成树是包含图中全部顶点的一个极小连通子图(边尽可能少,但要保持连通)
若图中顶点数为 n n n,则它的生成树有 n − 1 n - 1 n−1 条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路
生成森林
在非连通图中,每个连通分量的生成树构成了非连通图的生成森林
边的权、带权图/网
- 边的权 —— 在一个图中,每条边都可以标上具有某种含义的数值,该数值称为该边的权值
- 带权图/网 —— 边上带有权值的图称为带权图,也称为网
- 带权路径长度 —— 当图是带权图时,一条路径上所有边的权值之和,称为该路径的带权路径长度
几种特殊形态的图
- 无向完全图 —— 无向图中任意两个顶点之间都存在边
- 若无向图的顶点数 ∣ V ∣ = n |V| = n ∣V∣=n,则 ∣ E ∣ ∈ [ 0 , C n 2 ] = [ 0 , n ( n − 1 ) 2 ] |E| \in [0, C_n^2] = [0, \frac{n(n - 1)}{2}] ∣E∣∈[0,Cn2]=[0,2n(n−1)]
- 有向完全图 —— 有向图中任意两个顶点之间都存在方向相反的两条弧
- 若有向图的顶点数 ∣ V ∣ = n |V| = n ∣V∣=n,则 ∣ E ∣ ∈ [ 0 , 2 C n 2 ] = [ 0 , n ( n − 1 ) ] |E| \in [0, 2C_n^2] = [0, n(n - 1)] ∣E∣∈[0,2Cn2]=[0,n(n−1)]
- 边数很少的图称为稀疏图,反之称为稠密图,边数没有绝对的界限,一般来说 ∣ E ∣ < ∣ V ∣ l o g ∣ V ∣ |E| < |V|log|V| ∣E∣<∣V∣log∣V∣ 时,可以将 G G G 视为稀疏图
- 树 —— 不存在回路,且连通的无向图。对于 n n n 个顶点的树,必有 n − 1 n - 1 n−1 条边
- n n n 个顶点的图,若 ∣ E ∣ > n − 1 |E| > n - 1 ∣E∣>n−1,则一定有回路
- 有向树 —— 一个顶点的入度为 0 0 0,其余顶点的入度均为 1 1 1 的有向图,称为有向树,有向树不一定是强连通图