【数据结构与算法】线性表的查找

🔥 本文由 程序喵正在路上 原创,CSDN首发!
💖 系列专栏:数据结构与算法
🌠 首发时间:2022年12月5日
🦋 欢迎关注🖱点赞👍收藏🌟留言🐾
🌟 一以贯之的努力 不得懈怠的人生

查找

基本概念

查找 —— 在数据集合中寻找满足某种条件的数据元素的过程称为查找

查找表(查找结构) —— 用于查找的数据集合称为查找表,它由同一类型的数据元素(或记录)组成

关键字 —— 数据元素中唯一识别该元素的某个数据项的值,使用基于关键字的查找,查找结果应该是唯一的

对查找表的常见操作

  1. 查找符合条件的数据元素
  2. 插入、删除某个数据元素

只需进行操作 1 1 1 的为静态查找表,我们只关注查找速度即可;

两种操作都要进行的为动态查找表,除了查找速度,我们也要关注插入或删除操作是否方便实现

查找算法的评价指标

查找长度 —— 在查找运算中,需要对比关键字的次数称为查找长度

平均查找长度( A S L , A v e r a g e   S e a r c h   L e n g t h ASL, Average \ Search \ Length ASL,Average Search Length)—— 所有查找过程中进行关键字的比较次数的平均值

平均查找长度计算方式如下:
A S L = ∑ i = 1 n P i C i ASL = \sum_{i=1}^{n}P_iC_i ASL=i=1nPiCi
其中, n n n 为数据元素的个数, P i P_i Pi 为查找第 i i i 个元素的概率, C i C_i Ci 为查找第 i i i 个元素的查找长度。通常情况下,默认查找任何一个元素的概率是相同的

A S L ASL ASL 的数量级反映了查找算法的时间复杂度,评价一个查找算法的效率时,通常需要考虑查找成功和查找失败两种情况的 A S L ASL ASL

顺序查找

算法思想

顺序查找,又称为线性查找,通常用于线性表,线性表又分为顺序表和链表两种

算法思想:从头到尾一个个找,或者反过来也行

实现

第一种方法(常规):

typedef struct{				//查找表的数据结构(顺序表)
	ElemType *elem;			//动态数组基址
	int TableLen;			//表的长度
}SSTable;

//顺序查找
int Search_Seq(SSTable ST, ElemType key) {
	int i;
	
	//当找到或者找完就会跳出循环
	for (i = 0; i < ST.TableLen && ST.elem[i] != key; ++i);
	
	//查找成功则返回元素下标;否则返回-1
	return i == ST.TableLen ? - 1 : i;	
}

第二种方法(哨兵):

此时数据从下标为 1 1 1 处开始存储, 0 0 0 处作为哨兵

typedef struct{				//查找表的数据结构(顺序表)
	ElemType *elem;			//动态数组基址
	int TableLen;			//表的长度
}SSTable;

//顺序查找
int Search_Seq(SSTable ST, ElemType key) {
	ST.elem[0] = key;		//将要查找的值存进 0 处
	int i;
	
	//从后遍历
	for (i = ST.TableLen; ST.elem[i] != key; --i);
	
	//查找成功则返回元素下标;否则返回0
	return i;	
}

优点:无需判断是否越界,效率更高

查找成功的 A S L ASL ASL 1 + 2 + 3 + ⋯ + n n = n + 1 2 \frac{1 + 2+3 + \cdots + n}{n} = \frac{n+1}{2} n1+2+3++n=2n+1

查找失败的 A S L ASL ASL n + 1 n + 1 n+1

顺序查找的优化(对有序表)

查找表中元素有序存放(递增 / 递减),例如 7   13   19   29   37   43 7 \ 13 \ 19 \ 29 \ 37 \ 43 7 13 19 29 37 43,当我们要找 21 21 21 这个值时,一共有 n + 1 n+1 n+1 种查找失败的情况,此时查找失败的 A S L ASL ASL 1 + 2 + 3 + ⋯ + n + n n + 1 = n 2 + n n + 1 \frac{1 + 2+3 + \cdots + n + n}{n+1} = \frac{n}{2} + \frac{n}{n+1} n+11+2+3++n+n=2n+n+1n

在这里插入图片描述

用查找判定树分析ASL

在这里插入图片描述

一个成功结点的查找长度 = 自身所在层数

一个失败结点的查找长度 = 其父节点所在层数

默认情况下,各种失败情况或成功情况都等概率发生

顺序查找的优化(被查概率不相等)

如果每个元素的被查概率不相等,我们可以将被查概率大的放在靠前位置,这样可以减小查找成功的 A S L ASL ASL

折半查找

算法思想

折半查找,又称为 “二分查找”,仅适用于有序的顺序表

实现

以下代码基于数据是存储在升序的顺序表

typedef struct{				//查找表的数据结构(顺序表)
	ElemType *elem;			//动态数组基址
	int TableLen;			//表的长度
}SSTable;

//折半查找
int Binary_Search(SSTable L, ElemType key) {
	int low = 0, high = L.TableLen - 1, mid;
	while (low <= high) {
		mid = (low + high) / 2;		//取中间位置
		if (L.elem[mid] == key) 
			return mid;				//查找成功返回所在位置
		else if (L.elem[mid] > key)
			high = mid - 1;			//中间值比查找值要大
		else 
			low = mid + 1;			//中间值比查找值要小
	}
	return -1;		//查找失败
}

查找效率分析

假设有如下顺序表:

在这里插入图片描述

经过折半查找,我们可以得到一个它的查找判定树:

在这里插入图片描述

注:绿色部分为查找成功,紫色部分为查找失败

成功的平均查找长度为: ( 1 × 1 + 2 × 2 + 3 × 4 + 4 × 4 ) / 11 = 3 (1 \times 1 + 2 \times 2 + 3 \times 4 + 4 \times 4) / 11 = 3 (1×1+2×2+3×4+4×4)/11=3

失败的平均查找长度为: ( 3 × 4 + 4 × 8 ) / 12 = 11 / 3 (3 \times 4 + 4 \times 8) / 12 = 11/3 (3×4+4×8)/12=11/3

折半查找判定树的构造

  • 如果当前 l o w low low h i g h high high 之间有奇数个元素,则 m i d mid mid 分隔后,左右两部分元素个数相等

  • 如果当前 l o w low low h i g h high high 之间有偶数个元素,则 m i d mid mid 分隔后,左半部分比右半部分少一个元素

基于以上两个结论,我们可以得到下面的推论:

  • 折半查找的判定树中,若 m i d = ⌊ ( l o w + h i g h ) / 2 ⌋ mid = \lfloor(low + high)/2 \rfloor mid=(low+high)/2,则对于任何一个结点,必有 —— 右子树结点数 − - 左子树结点数 = 0 = 0 =0 1 1 1

所以我们可以得到 1 ∼ 16 1 \sim 16 116 个元素的折半查找判定树如下:

在这里插入图片描述
(注:图中的数字只是一个编号,不是值)

折半查找的判定树一定是平衡二叉树

折半查找判定树中,只有最下面一层是不满的,因此,元素个数为 n n n 时树高 h = ⌈ l o g 2 ( n + 1 ) ⌉ h = \lceil log_2(n + 1)\rceil h=log2(n+1)(注:计算方法同 “完全二叉树”)

判定树结点关键字:左 < 中 < 右,满足二叉排序树的定义

若成功结点为 n n n 个,则失败结点为 n + 1 n + 1 n+1 个(等于成功结点的空链域数量)

查找效率

树高 h = ⌈ l o g 2 ( n + 1 ) ⌉ h = \lceil log_2(n + 1)\rceil h=log2(n+1)

查找成功的 A S L ≤ h ASL \leq h ASLh,查找失败的 A S L ≤ h ASL \leq h ASLh

所以折半查找的时间复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n)

分块查找

算法思想

在这里插入图片描述

如上图,下面是顺序表,上面是对应的索引表,索引表中保存了每个分块的最大关键字和分块的存储区间

特点:块内无序,块间有序

//索引表
typedef struct{
	ElemType maxValue;
	int low, high;
}Index;

//顺序表存储实际元素
ElemType List[100];

分块查找,又称为索引顺序查找,算法过程如下:

  1. 在索引表中确定待查记录所属的分块(可顺序、可折半)
  2. 在块内顺序查找

在进行折半查找所属分块时,如果索引表中不包含目标关键字,则折半查找索引表最终停在 l o w > h i g h low > high low>high,这时候我们要在 l o w low low 所指分块中查找

  • 原因:最终 l o w low low 左边一定小于目标关键字, h i g h high high 右边一定大于目标关键字,而分块存储的索引表中保存的是各个分块的最大关键字

查找效率分析

在这里插入图片描述

假设,长度为 n n n 的查找表被均匀地分为 b b b 块,每块 s s s 个方块

设索引查找和块内查找的平均查找长度分别为 l I l_I lI L s L_s Ls,则分块查找的平均查找长度为
A S L = l I + L s ASL = l_I + L_s ASL=lI+Ls
用顺序表查找索引表,则 L I = ( 1 + 2 + ⋯ + b ) b = b + 1 2 L_I = \frac{(1 + 2 + \dots + b)}{b} = \frac{b + 1}{2} LI=b(1+2++b)=2b+1 L s = ( 1 + 2 + ⋯ + s ) s = s + 1 2 L_s = \frac{(1 + 2 + \dots + s)}{s} = \frac{s + 1}{2} Ls=s(1+2++s)=2s+1,那么 A S L = b + 1 2 + s + 1 2 = s 2 + 2 s + n 2 s ASL = \frac{b + 1}{2} + \frac{s + 1}{2} = \frac{s^2 + 2s + n}{2s} ASL=2b+1+2s+1=2ss2+2s+n,当 s = n s = \sqrt{n} s=n 时, A S L ASL ASL 最小,为 n + 1 \sqrt{n} + 1 n +1

用折半查找查索引表,则 L I = ⌈ l o g 2 ( b + 1 ) ⌉ , L s = ( 1 + 2 + ⋯ + s ) s = s + 1 2 L_I = \lceil log_2(b + 1) \rceil, L_s = \frac{(1 + 2 + \cdots + s)}{s} = \frac{s + 1}{2} LI=log2(b+1),Ls=s(1+2++s)=2s+1, 则 A S L = ⌈ l o g 2 ( b + 1 ) ⌉ + s + 1 2 ASL = \lceil log_2(b + 1) \rceil + \frac{s + 1}{2} ASL=log2(b+1)+2s+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序喵正在路上

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值