Leecode62.不同路径(动态规划)
题目中的约束条件:每次只能向下或向右移动一步;
由题可知可将网格分为两部分
1.第一行和第一列
因为从初始位置 到达第一行第一列任何位置的路径 都只有一条;
2.剩余部分(网格中除第一行第一列以外的其他部分)
//dp[i][j]为到达(i,j)的路径数
//有约束条件可知(i,j)可由(i-1,j)走一步到达,也可以由(i,j-1)走一步到达
//则到达(i,j)的路径数是到达(i-1,j)和(i,j-1)路径数的总和,表达式如下
dp[i][j]=dp[i-1][j]+dp[i][j-1]; //前提条件i>=1,j>=1
代码如下
int uniquePaths(int m, int n){
int dp[m][n];
int j,i;
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
if(i==0||j==0)
dp[i][j]=1;
else
dp[i][j]=dp[i][j-1]+dp[i-1][j];
}
}
return dp[m-1][n-1];//到达(m-1,n-1)的路径数,即到达方格中第m行n列的路径数
}
点击跳转Leecode63.不同路径II(动态规划)
点击跳转