【二分图+数据范围】牛客练习赛 E 奇环

该篇文章提供了一段C++代码,用于初始化图结构、添加边以及进行深度优先搜索(DFS)来判断图是否可以被染成两种颜色,即是否存在二分图。在处理一定条件下的边数和节点数关系后,代码通过构建并查集判断连通性。
摘要由CSDN通过智能技术生成

 题意:

思路: 

 

 Code:

#include <bits/stdc++.h>

using namespace std;

const int mxn=1e6+10;
const int mxe=1e6+10;

struct ty{
    int to,next;
}edge[mxe<<1];

map<pair<int,int>,int > mp; 

int N,M,u,v,tot=0;
int head[mxn];
int col[mxn];

void add(int u,int v){
    edge[tot].to=v;
    edge[tot].next=head[u];
    head[u]=tot++;
}
void G_init(){
    tot=0;
    for(int i=0;i<=N;i++){
        head[i]=-1;
    }
}
int dfs(int u,int c){
    col[u]=c;
    for(int i=head[u];~i;i=edge[i].next){
        if(col[edge[i].to]==-1){
            if(!dfs(edge[i].to,!c)) return false;
        }else if(col[edge[i].to]==c) return false;
    }
    return true;
}
void solve(){
    cin>>N>>M;
    G_init();
    mp.clear();
    for(int i=1;i<=M;i++){
        cin>>u>>v;
        mp[{u,v}]=mp[{v,u}]=1;
    }
    if(N>=896||N*N/4-N/2-100>M){
        cout<<"YES"<<'\n';
        return;
    }
    for(int i=1;i<=N;i++){
        for(int j=i+1;j<=N;j++){
            if(!mp.count({i,j})&&!mp.count({j,i})){
                add(i,j);
                add(j,i);
            }
        }
    }
    memset(col,-1,sizeof(col));
    for(int i=1;i<=N;i++){
        if(col[i]==-1){
            if(!dfs(i,0)){
                cout<<"YES"<<'\n';
                return;
            }
        }
    }
    cout<<"NO"<<'\n';
}
signed main(){
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    int __=1;cin>>__;
    while(__--)solve();return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值