概率与期望
文章平均质量分 54
lamentropetion
---
展开
-
【期望+状压DP】 2021 CCPC G
注意到在转移过程中需要用到用了哪辆车的两点之间的最短路,因此我们考虑预处理这个最短路,这个就类似于分层图的思想搞一搞就好了。设 dp[x][st] 为 当前处于 x 结点上,且经过的结点状态为 st 的最小期望路径长度。要求最小的期望长度,我们可以遍历所有可能的路径,统计这些路径的期望长度的最小值即可。可能关于期望的状压DP用记忆化搜索会好处理一点(?这里很经典的处理方式是状压DP。注意到 k 的范围是18,可以考虑状压。这里的状压DP我们用记忆化搜索解决。原创 2023-09-23 00:05:12 · 276 阅读 · 0 评论 -
【状压+概率DP】CF678 E
设 dp[s][i] 表示,现在选的方案为 s ,且我是 i 的最终胜利的概率是多少。概率DP就是看当前状态从哪些状态转移过来,边权就是概率,加一下就好了。这是很经典的状压DP转移方式:选择两个1,然后转移。有两种情况,j 战胜 k 或 k 战胜 j。首先,n <= 18,应当想到状压。然后答案就是枚举一下我是哪个就好了。很明显,这里可以使用状压DP。根据这两种情况乘一下概率即可。原创 2023-08-30 18:24:59 · 160 阅读 · 0 评论 -
期望DP入门
在选的过程中,如果选到了1-K号的某个没被选过的球,剩下就选K-1个,因此线性性质就体现在 剩下还要选多少球 中。因此设dp[k][m]为还剩下m个红色小球,且还需要选k个不同编号的红色小球的选择次数的期望。后者的期望贡献:dp[i]+=(1-k/n)*(dp[i-1]+1),边权为1。前者的期望贡献:dp[i]+=k/n*(dp[i-1]+1),边权为1。选没被选过且编号在1-K的,就是对次数有贡献的,否则就是没有贡献的。对期望有贡献的部分:m/n*(dp[k-1][m-1]+1)原创 2023-07-08 21:02:34 · 604 阅读 · 0 评论 -
【期望定义】CF453A
关于期望的问题,有两种思路:一种是期望DP,另一种是直接根据期望的定义求。我们可以把所有可能的结果抽象成一棵树,一棵很特殊的K叉树。对于第 i 次抛硬币,合法情况是i^n-(i-1)^n。我们去枚举在n次抛硬币的过程中的最大值。对于特殊的树,直接用组合数去计算即可。n次抛硬币,硬币有m种结果。期望是什么,是权值*概率。原创 2023-06-02 20:24:30 · 77 阅读 · 0 评论 -
【期望】Kuangbin 危险的派对 牛客期望专题班 increment of coins
本来对期望怎么想都想不通,后来看了大佬的题解,自己动手画了画,以及队友说的“拆分”,忽然间就有点懂了....如果不是DAG,而是成为了环,那么就可以直接列方程了。这个说的很对,把期望问题看作是DAG上的递推。原创 2023-06-02 17:22:26 · 151 阅读 · 0 评论