1. 扩大区间
P4155 [SCOI2015] 国旗计划例题1:P4155 [SCOI2015] 国旗计划
计算能覆盖整个圆圈的最少区间,题目给定的所有区间互相不包含,按区间左端点排序后,区间的右端点也是单增的。
我们首先需要化圆为线,然后贪心(优化为倍增)选择一个右端点最远的线段,并且该线段的左端点在上个线段的内部。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 4e5+10;
struct seg{
int id, l, r;
bool operator < (const seg & x) const{
return l < x.l;
}
}a[N];
int go[N][20]; //倍增
int n, m, ans[N];
void init() {
int nxt = 1;
for(int i = 1; i<=n*2; i++) {
while(nxt <= n*2 && a[nxt].l <= a[i].r) nxt++;
go[i][0] = nxt - 1;
}
for(int i = 1; (1<<i) <= n; i++) { //最多跳2^n, 不超过n
for(int st = 1; st <= n*2; st++) {
go[st][i] = go[go[st][i-1]][i-1];
}
}
}
void getans(int x){
int now = x, res = 1; //从第x个战士出发
for(int i = log2(N); i>=0; i--){ //注意二进制是从高位开始枚举
int pos = go[now][i];
if(pos && a[pos].r < a[x].l + m) { //跳的那个位置不超过一圈后的自己
res += 1<<i;
now = pos; //就可以跳
}
}
ans[a[x].id] = res+1;
}
int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i<=n; i++) {
scanf("%d%d", &a[i].l, &a[i].r);
a[i].id = i;
if(a[i].r < a[i].l) a[i].r += m; //化圆为链
}
sort(a+1, a+n+1);
for(int i = 1; i<=n; i++){ //每一个线段的终点是自己, 想想a[n]是要绕一圈到a[1]的
a[i+n].id = a[i].id;
a[i+n].l = a[i].l + m;
a[i+n].r = a[i].r + m;
}
init();
for(int i = 1; i<=n; i++) getans(i);
for(int i = 1; i<=n; i++){
printf("%d ", ans[i]);
}
return 0;
}
例题2:2021年中国大学生程序设计竞赛女生专场 B攻防演练
与上面的代码很像,大概原理都一样的
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5+10;
int pos[30], n, m, dp[N][30];
int main(){
scanf("%d%d", &m, &n);
string s; cin>>s;
s = '#' + s;
for(int i = 0; i<=20; i++) dp[n+1][i] = n+1; //需要初始化边界, 因为有的dp会跳到最后
for(int i = 0; i<26; i++) pos[i] = n+1;
for(int i = n; i >= 0; i--){ //i = 0也要更新, 因为从l-1开始跳
for(int j = 0; j<m; j++)
dp[i][0] = max(dp[i][0], pos[j]);
if(i) pos[s[i]-'a'] = i;
}
for(int j = 1; j <= 20; j ++){ //枚举区间长度
for(int i = 0; i <= n; i++){
dp[i][j] = dp[dp[i][j-1]][j-1];
//以i开始跳, 跳2^j次后到达的最大位置; 即以i开始跳, 先跳2^(j-1)次, 然后再跳2^(j-1)次
}
}
int q; scanf("%d", &q);
while(q--) {
int l, r; scanf("%d%d", &l, &r);
int ans = 1, p = l-1;
for(int j = 20; j>=0; j--){
if(dp[p][j]<=r) {
p = dp[p][j];
ans += (1<<j);
}
}
printf("%d\n", ans);
}
return 0;
}
2. 区间最大/最小值,st表
如果元素满足倍增关系,例如快速幂、LCA都可以用到倍增
区间最大值:
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5+10, M = 25;
int dp[N][M];
int main() {
int n; scanf("%d", &n);
for(int i = 1; i <= n; i++) scanf("%d", &dp[i][0]);
for(int j = 1; j <= 20; j++){ //首先枚举区间长度
for(int i = 1; i+(1<<j)-1 <= n; i++){ //再枚举起点
dp[i][j] = max(dp[i][j-1], dp[i+(1<<(j-1))][j-1]);
}
}
int q; scanf("%d", &q);
while(q--) {
int l, r; scanf("%d%d", &l, &r);
int k = log2(r-l+1); //区间长度的指数
printf("%d\n", max(dp[l][k], dp[r-(1<<k)+1][k]));
}
return 0;
}