python数据处理
文章平均质量分 58
Python数据处理
诺坎普的风间
最喜居正无赖,本色沧海横流
展开
-
【全网最清楚】Python numpy的多维数组形状讲解
相信很多小伙伴在学习numpy的过程中都会被其多维数组的概念搞的头晕眼花,尤其是多维这个概念不知道每一个维度对应的是什么意思,那么今天我就用几句话给大家讲一下,绝对让你豁然开朗。并且每一个较高一级的维度的值表示的是比它低一级的维度中的元素的个数;如果A,B有一个维度d相等,并且其中一个多维数组A的其他维度值都为1,那么就是B数组的所有维度全部加上A的d维度的值。原创 2023-01-03 12:08:48 · 925 阅读 · 0 评论 -
【简单易懂】numpy多维数组索引和切片的理解
Nunpy数组的索引和切片要结合其形状来理解,如果理解numpy多维数组的形状,那么其切片也很好理解。建议在阅读下面部分内容前,先看一下(字数不多,言简意赅且和下面讲解内容相关)【全网最清楚】Python numpy的多维数组形状讲解_榕城候佳人的博客-CSDN博客相信很多小伙伴在学习numpy的过程中都会被其多维数组的概念搞的头晕眼花,尤其是多维这个概念不知道每一个维度对应的是什么意思,那么今天我就用几句话给大家讲一下,绝对让你豁然开朗。原创 2023-01-04 19:12:31 · 971 阅读 · 0 评论 -
原来python中多维数组的拼接这么简单
前面再多的维度,都只是增加比它低一维度的向量的个数(5维向量在第1个维度拼接是增加4维向量的个数,在第2个维度拼接是增加3维向量的个数······)5.所以,只需要搞清楚最后2个维度,即行和列即可。原创 2023-09-04 17:41:12 · 1733 阅读 · 0 评论 -
优雅的迭代之生成器与迭代器——python进阶知识
提到生成器就不得不提到循环,在python中之所以会出现生成器这个东西,就是因为在循环中可能出现循环占用太多内存的问u题。当循环出现内存不足或者运行太慢时,可以考虑把它改造成一个生成器。生成器是一个函数。它可以逐步产生我们想要的值,而不需要一次性计算并返回所有结果。在这个函数中我们用一个循环并判断出想要的数据。同时在外面再用一个循环来接收生成器产生的想要的数据。它其实就是用于对循环进行控制,只生成循环中我们所需要的结果,生成完直接返回给循环的结果,中间不用内存存储。原创 2023-07-11 12:05:32 · 218 阅读 · 0 评论 -
疫情数据微处理——Numpy实战
数据来自于Kaggle公开免费数据集,需要的伙伴可以自行到这里下载。二、展示数据我们用一个字典存储csv数据的第一行、每一行开头的日期以及除了这两者外的数据。import csvimport numpy as npwith open("./2020年疫情数据/day_wise.csv", "r", encoding='utf-8') as f: csvfile = f.readlines() COVID_19_data = { "heade原创 2023-07-13 13:57:30 · 158 阅读 · 0 评论 -
多线程——python进阶知识
是单个内核通过锁的手段实现同一时间运行多个程序,在某些情况下可以提升总体的运行效率。同时为了防止多个线程在对同一数据进行修改时导致的不可预测的后果,需要借助锁、队列等保证进程的同步。因为新线程的函数是无法使用return完成数据的返回,因此需要借助队列完成数据放入和取出操作。是多个内核执行多个任务,可以实现一时间完成多个任务,保证提升效率。原创 2023-07-11 17:10:50 · 251 阅读 · 0 评论 -
pandas的数据结构
Series与DataFrame是pandas的两个数据结构。前者类似于一维数组,是一行或者一列,并且有index索引;后者是表格型的数据结构,包括了行和列。不仅有行索引index,也有列索引columns。且每行每列都是series。原创 2023-01-07 09:56:21 · 104 阅读 · 0 评论