- 博客(158)
- 收藏
- 关注
原创 基于Flask-REXTs创建一个项目接口并利用github上传部署
实习过程中需要自己单独编写一个项目使用到的api,并独立完成api的上传部署,这里记录一下全过程。
2024-08-24 12:12:30 542
原创 人工智能算法岗找实习经验(一)简历撰写
首先分享简历撰写,下面简历仅供参考。分为教育经历、个人能力、项目经历和竞赛经历4个部分。因为找的是算法岗,所以没有涉及太多技术和项目之外的东西。
2024-08-08 19:36:49 350
原创 pycharm中运行.sh文件
File—>Settings—>Tools—>Terminal—>Shell path,将cmd.exe改成刚刚下载的git的路径,注意选择的是sh.exe!最近在跑一个项目代码,里面要运行.sh文件。于是配置了下如何在pycharm中正常运行.sh文件。首先安装好git,然后。
2024-07-20 21:13:19 482
原创 git clone超时的解决方法
因为git clone没有配置梯子对应的代理,只需要为git clone配置使用的梯子的代理接口。通过如下设置,把端口号改成电脑设置里面中代理的端口号即可。git config --global http.proxy "127.0.0.1:端口号"问题描述:在克隆一个仓库的时候,使用梯子可以访问,但是进行克隆就超时,报错如下。
2024-07-20 20:11:33 566
原创 解决selenium加载网页过慢影响程序运行时间的问题
在用selenium爬取动态加载网页时,发现网页内容都全部加载完了,但是页面还在转圈,并且获取页面内容的代码也没有执行,后面了解到selenium元素操作等方法是需要等待页面所有元素完全加载完成后才开始执行的,所以在页面未完成加载前,代码会一直等待页面加载不继续执行。通过这2步可以大大提升速度。之前我加载页面一个就要42s,效率很低。设置加载策略,设置加载策略为eager。
2024-06-05 09:32:12 683
原创 【期末复习向】智能信息系统第4章梳理
所谓推理,就是从已知事实出发运用相关的知识或规则逐步推出结论或者证明某个假设成立或不成立的思维过程。不确定性方法分类1.模型方法a)数值方法:基于概率(可信度方法、主观Bayes方法,证据理论方法模糊推理b)非数值方法:逻辑法2.控制方法设计到可信度方法的题目,知识都是用生成式表达的,即如果题目里面出现了就说明这题需要考虑可信度方法,CF(H,E)代表由证据E推理得到结果H的可信度。证据E,知识 IF E THEN H和结果H。
2024-04-24 21:10:59 410
原创 Vue3+echarts绘制世界地图
第二步,在绘制地图的vue组件中导入该json文件。解释第三个import,world可以随便改名字,在下面第三步注册地图的时候对应第二个world。第三步,定义图表并配置图表。注意在注册地图的时候,第一个是地图的名称,第二个是在import的时候给json文件取的名字。核心步骤:下载对应的地图文件;在script中导入json文件;下面给出完整代码(script),template部分只需要设置对应的图表id即可。之前所查找的资料都没有讲清楚如何引入地图文件并绘制地图,下面做一个记录。
2024-03-24 23:30:19 1907 2
原创 记录echarts各种地图json文件下载地址
今日绘图需要用到echarts的地图json文件,但是github上已经找不到了,后发现伟大的网友提供了地址如下:Index of /examples/data/asset/geo
2024-03-24 15:06:41 2400 1
原创 echarts散点图自定义tooltip,鼠标放上去展示多行数据
时,可以展示多行数据。之前查找资料的时候,很多用字符串模板的,即{a}{b}{c}之类的,但是经过实践之后发现这种方法对于散点图并不合适(当然也可能是因为我没找到正确的办法)。核心就是tooltip中的formatter代码,这里可以在其中用console.log来查看,再决定返回什么数据。这样就可以实现文章开头的效果了。不过最后还是找到了解决方法,下面给出代码,大家可以根据自己的情况修改。
2024-03-17 16:03:51 4637
原创 echarts散点图的散点用自定义图片替代
base64图片转换工具,是一款可以在线任意图片格式转Base64 DataUrl编码工具,可以让你很方便地在没有上传文件的条件下将图片插入其它的网页、编辑器中。要实现不同的点对应不同的图片,只需要在series中每个symbol设置不同dataURI即可。总结一下,就是先把图片转换成dataURI,然后在series中的symbol写上即可。base64图片在线转换工具 - 站长工具。
2024-03-16 09:10:44 1206
原创 pyecharts饼图只展示百分比,避免过长的小数点
重点是 .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%"),
2024-03-07 17:17:32 590
原创 记录vue3导入并使用echarts自定义主题文件设置统一图表样式
在做数据可视化网站时,有时需要用到多个图表,这时就需要对图表的样式做一个统一的设计使网站外观更整齐。
2024-03-04 00:12:56 640
原创 vue3的echarts从后端获取数据,用于绘制图表
场景需求:后端采用flask通过pymysql从数据库获取数据,并返回给前端。前端vue3利用axios获取数据并运用到echarts绘制图表。
2024-02-27 20:27:10 1750
原创 vue3实现页面跳转
有需求是在vue项目中实现点击按钮完成页面跳转。这里不适用a标签,而是用vue自带的vue-router。首先看一下项目结构src│ App.vue│ main.js│├─router│└─viewindex.vue可以看到,我在初始的vue项目中添加了一个文件夹router,并在里面添加了一个index.js文件。
2024-02-26 19:56:43 2506 2
原创 vue从flask获取数据并显示
这里简化了flask连接数据库的部分,假设已经取得了数据这里用“我爱你ლ(′◉❥◉`ლ)”字符串表示后端返回的数据库数据。记录一个前后端分离遇到的问题,即vue前端从flask后端获取数据。具体描述如下:flask只负责连接数据库并获取数据库的数据,并返回给前端vue;vue则需要获取后端返回的数据并显示。这里我们点击按钮后利用axios(也需要npm install axios进行安装)就可以获取从后端返回的数据。需要注意的是,后端flask与前端vue需要同时开启服务器。
2024-02-24 17:18:47 1033
原创 js实现顶部导航栏随着滚动条下滑显示背景颜色,上划到顶部背景颜色消失
有个项目需求,如题目所示。这种展示方式让首页的内容可以完美展示而不受到导航栏的干扰,等下滑查看内容时导航栏的背景颜色再显示出来。非常简单,有需要的伙伴可以根据自己实际情况自行修改。导航条随滚动条下滑显示-示例。导航栏随滑动条下滑显示。
2024-02-23 17:01:58 460
原创 vue3项目引入本地js文件,实现一个音频播放按钮
目前有一个需求就是在网页上放置一个音乐控制按钮,并且是在vue3项目里面。于是小白的我遇到了2个问题,第一个问题是如何实现没有进度条的播放按钮,这个网上有现成的代码,可以通过js代码切换不同的图片或者是别的样式,并不算难;第二个问题是如何在vue3项目中引入js文件,这个给刚刚接触vue3的我带来了一点麻烦。首先声明这个功能只涉及了我的3个页面,一个是vue组件,另一个就是自建的本地js文件,还有一个就是vue项目自带的index.html文件。最后一步是在index.html文件引入js文件。
2024-02-18 16:18:25 1445
原创 去除vue自带的边距
查阅资料后发现要在vue项目自带的index.html文件内添加下面的样式代码才行。使用vue时发现总有去不掉的外边距,在index.vue里面怎样设置样式都不管用。
2024-02-13 17:53:38 784
原创 【Gephi项目实战-带数据集】利用gephi绘制微博肖战超话120位用户关系图,并计算整体网络指标与节点指标
最近2天需要用到gephi做社会网络分析,于是从0开始接触gephi并摸索出了gephi的基本使用指南。下面将结合真实的节点文件与边文件,利用gephi绘制社会网络并计算相关测量指标。整个过程会详细讲解:1.数据格式2.如何导入数据3.如何调整外观4.布局选取5.节点与网络测量指标的计算文章围绕做项目的过程介绍gephi的使用,所以可能漏掉部分功能,但我认为主要功能都涵盖进去了。更详细的介绍,也可以看我评论区的B站讲解视频,会演示如何操作,应该更清楚一些。
2024-02-05 20:50:59 3231 1
原创 【selenium方式】获取微博指定用户指定日期内所有帖子详细数据
这篇文章主要放源代码,思路不会介绍特别清楚,详细思路可以看评论区的b站讲解视频。获取微博肖战超话内容部分用户的帖子数据,日期范围限定在近2个月,要求获得帖子的发布时间、帖子文本内容、转发数据、评论数据和点赞数据(不包括评论的内容和点赞的人)。通过调查发现,微博有2个入口,第一种如下:第二种如下: 这2种入口爬取方式不同,我因为不熟悉微博,所以也是把两个入口的方式都试了一遍。。。所以这里有个经验要分享一下:爬虫的最终目的是获取需要的数据,不管用什么方式,从网站哪个入口开始,都应该要实现高效率的获得所有数据。因
2024-02-01 14:49:10 1347 2
原创 利用selenium批量获取百度地图的地址搜索结果
讲解下思路:在打开百度地图url后,因为是循环操作输入地址查找,所以每找完一个地址后需要删掉输入框内的地址,所以循环前都先用“Ctrl + A”加删除。需要注意的是百度地图搜索到的结果页面url会发生变化,所以要跳转到新的url页面中。最后定位到结果所在的元素,提取里面的文字即可。最近一个项目有需求如下:确定一批地址的具体信息(精确到省市区),有些地址是很模糊的,需要百度搜索。于是想到利用selenium操纵百度地图,通过自动输入地址和获取搜索结果加上一定的字符串处理就可以批量完成这个任务。
2024-01-17 10:29:45 873 1
原创 【120版本】最新谷歌浏览器驱动下载地址
在使用selenium时可能会遇到谷歌浏览器和谷歌驱动器版本不一致的问题,并且国内可以搜到的谷歌浏览器下载地址里面最新的驱动器只有114版本的,但目前谷歌浏览器最新版本是120。然后把里面的Chromedriver.exe放到Chrome所在文件夹。
2024-01-14 00:02:02 7073
原创 【期末复习向】数据可视化技术
在计算机视觉领域,数据可视化是对数据的一种形象直观的解释,实现从不同维度观察数据,从而得到更有价值的信息。数据可视化将抽象的、复杂的、不易理解的数据转化为人眼可识别的图形、图像、符号、颜色、纹理等 ,这些转化后的数据通常具备较高的识别效率,能够有效地传达出数据本身所包含的有用信息。模式、关系和异常。(1)模式。指数据中的规律。(2)关系。指数据中的相关性。(3)异常。指有问题的数据。
2024-01-04 18:04:17 2262
原创 【期末复习向】n元gram的应用
P(s) = P(他|)P(是|他)P(研究|是)P(生物|研究)P(的|生物)P(|的)P(s) = P(他|)P(是|他)P(研究|是)P(生物|研究)P(的|生物)P(|的)计算方法是前一个词在后一个词出现的基础上出现的次数/后一个词出现的总次数。一个常考的应用:求句子的概率。例如给定上面的句子,求一个新的句子“他是研究生物的”出现概率。有时训练数据较少容易导致零概率的问题,如下图,句子的概率为0。n元文法的应用:1.音字转换2.汉字分词等。
2023-12-15 22:06:22 540
原创 【期末复习向】top-k方法
但是模型虽然不能准确地将ground truth作为最高概率预测出来,但通过学习,至少groud truth的准确率能够在所有类中处于很靠前的位置,这在现实生活中也是有一定应用意义的。什么是top-k方法?top-k方法常用于解决许多海量数据处理相关的问题,例如在1亿个数据中找出访问次数前1000的热点数据,在海量搜索字符串中找出搜索频率排在前十的搜索字符串等等。而在分类问题中,top-k也有其应用。选取多少个字符进行采样是由自己决定的,增加k值会带来更多样化的结果,但输出错误的风险也会增加;
2023-12-15 20:32:44 518
原创 【期末复习向】长江后浪推前浪之ChatGPT概述
这篇文章讲了之前称霸NLP领域的预训练模型bert,它是基于预训练理念,采用完形填空和下一句预测任务2个预训练任务完成特征的提取。当时很多的特定领域的NLP任务(如情感分类,信息抽取,问答等)都是采用bert加上领域数据微调解决。【期末向】“我也曾霸榜各类NLP任务”-bert详解-CSDN博客。
2023-12-15 19:45:27 1637
原创 【期末向】“我也曾霸榜各类NLP任务”-bert详解
首先我们要了解一下什么是预训练模型,举个例子,假设我们有大量的维基百科数据,那么我们可以用这部分巨大的数据来训练一个泛化能力很强的模型,当我们需要在特定场景使用时,例如做文本相似度计算,那么,只需要简单的修改一些输出层,再用我们自己的数据进行一个增量训练,对权重进行一个轻微的调整。NSP属于二分类任务,在此任务中,我们输入两个句子,B有50%的可能是A的下一句,也有50%的可能是来自语料库的随机句子,预测B是不是A的下一句。即对于给定的输入序列,我们随机屏蔽15%的单词,然后训练模型去预测这些屏蔽的单词。
2023-12-14 21:05:28 505
原创 【期末复习向】走进循环神经网络系列-RNN,LSTM,GRU
这里的cross attention之所以是交叉,就是因为q向量来自于decoder的第一个Add&Norm操作后的一排向量,乘一个新的Wq矩阵得到的,而k,v向量则来自于encoder的输出向量乘上新的Wk和Wv矩阵得到的,然后q向量对k相乘加上v向量得到新的输出向量。其实仔细看我下面的图,x1和h0可以看做一个向量,然后他们一起乘以由权重矩阵U和W构成的矩阵的倒置,而这就满足了把上一时刻的隐藏层的输入融入当前时刻的输出,然后再一起经过隐藏层的概念。输入层就是具有维度的向量,输出层也是向量。
2023-12-14 16:33:04 1871
原创 【期末复习向】走进MLP多层感知机
mlp多层感知机,属于最简单的人工神经网络,也被称为全连接神经网络、前馈网络。它是了解神经网络的基础,包括输入层、隐藏层和输出层3个架构。输入层就是具有维度的向量,输出层也是向量。只有隐藏层是包括了所谓的人造神经元。
2023-12-14 09:25:17 989
原创 【期末复习向】常见的激活函数
激活函数是非线性的函数,使用它的原因就是因为线性函数无论叠加多少层,最终带来的变化都是线性的组合,一般也只能用于线性分类,如经典的多层感知机。但是如果加上非线性的变换,根据通用近似定理,就可使得神经网络无限逼近任意函数,可以解决的问题范围也就大大增加了。下面举例3个常见的激活函数,sigmoid、tanh、relu及其变种。sigmoid也叫logistics函数它的输出恒大于0如图所示,值域是在0-1的。relu属于非饱和函数,即不存在训练饱和的问题,但是容易导致梯度爆炸问题。而Tanh函数是零中心化。
2023-12-13 23:58:37 434
原创 【期末考复习向】transformer的运作机制
W的行数等于独热向量的维度,W的列数则是期望的稠密向量每个字的维度。同时decoder的输入是bos的独热向量,在cross attention部分bos的词向量会得到q,结合深度学习的词向量的kv,重新得到一个新的bos的词向量。这里的cross attention之所以是交叉,就是因为q向量来自于decoder的第一个Add&Norm操作后的一排向量,乘一个新的Wq矩阵得到的,而k,v向量则来自于encoder的输出向量乘上新的Wk和Wv矩阵得到的,然后q向量对k相乘加上v向量得到新的输出向量。
2023-12-13 22:00:57 1270
原创 我做了一个世界杯数据可视化网站······
经过2个月的工作,我完成了80%的工作量,并成功将静态网站进行了部署。并对页面进行了更新。不过当前虽然完成了部署,但是还没有实现响应式布局,所以只有用谷歌浏览器打开会正常显示布局。同时可能是部署在github的原因,页面加载有点慢。这些问题我后面还会解决,先看看效果吧。源代码等结课以后再公布~简单的设计了一下,介绍了可视化的内容,灵感来源等等,也还有部分内容没有设计完。然后是3届世界杯的可视化,这里只设计好了2014年的一部分,中间是对单个国家的具体分析。然后是整体的分析(内容是随便写的)
2023-11-23 18:52:57 549
原创 我做了一个世界杯的可视化网站...
这学期有个数据可视化的作业,遂决定做一个世界杯主题的可视化网站。基于Python、Flask和Echarts。因此网站也将分为3个大块,分别是单届世界杯的数据详细分析、3届世界杯数据对比分析和其他往届世界杯重要数据分析。好吧我是标题党,标题用的是完成时,但是事实上我这个还没完成。后面会针对每个模块给出详细介绍。
2023-10-27 17:09:45 376
原创 利用a标签锚点定位实现切换页面的部分内容
最近在做一个数据可视化大屏的作业,其中需要实现点击不同的按钮,大屏中间内容呈现不同的数据分析图表,页面其他部分不发生改变。之前考虑过复制多个页面然后改变中间的页面,但是这样会导致文件冗余,而且由于静态文件放在不同的文件夹,所以每个复制的页面都要调整文件路径!废话不多说先看代码。不过核心就是下面这句话:把所有要切换的内容放在一个大的div里面,然后用对应的div放对应的要切换的页面,每个div设置一个id。(当然也有一些用js实现的,但是我还么学,所以只能用这个了,而且这个也是非常方便相较于js)
2023-10-27 14:47:10 1214
原创 对pytorch中的文本分类实例代码进行逐行注释
super(TextClassificationModel, self).__init__() # 继承nn.Moduleself.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False) # 设置词嵌入层,其中第一个参数是指字典的大小;第二个参数是设置每个单词转换成的向量的维度。
2023-10-21 14:33:01 313
原创 关于yield你只需要知道这2点
运行上面的代码,得到的输出是从1-10,原因就在于第一次运行时计算num得到1,然后yield返回一个1并且打印出来。之后第二次循环的原因就是,g这个生成器对象中的循环还没有结束,它会在yield返回num=1后继续下一次训话,即判断num
2023-10-21 11:54:49 154
原创 原来python中多维数组的拼接这么简单
前面再多的维度,都只是增加比它低一维度的向量的个数(5维向量在第1个维度拼接是增加4维向量的个数,在第2个维度拼接是增加3维向量的个数······)5.所以,只需要搞清楚最后2个维度,即行和列即可。
2023-09-04 17:41:12 1685
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人