第2章-1 计算 11+12+13+...+m 分数(30)

输入一个正整数m(20<=m<=100),计算 11+12+13+...+m 的值。

输入格式:

在一行输入一个正整数m。

输出格式:

在一行中按照格式“sum = S”输出对应的和S.

输入样例:

在这里给出一组输入。例如:

90 

输出样例:

在这里给出相应的输出。例如:

sum = 4040

代码如下: 

a = int(input())
sum = 0
for i in range(11,m+1):  #左闭右开区间
    sum = sum + i
print("sum =",sum)    # = 后面不用加空格

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这是一个数列求和的问题,数列的通项公式为 (2k-1)/k!,其中 k 从 1 取到 n。 将每一项代入公式,得到: 1+3/2+5/6+7/24+...+(2n-1)/n! 需要将每一项化简成通分数,然后再求和。具体步骤如下: 1. 将每一项的分母化成 k! 的形式,即: 1 = 1!/1! 3/2 = 3!/2!/3 5/6 = 3!/2!/3 * 5/4 7/24 = 3!/2!/3 * 5/4 * 7/6 ... 2. 将每一项的分子化成 2k-1 的形式,即: 1 = 2*1-1 3/2 = 2*2-1 5/6 = 2*3-1 7/24 = 2*4-1 ... 3. 将每一项的分子分母相乘,得到: 1 = 1!/1! 3/2 = 3!/2!/3 5/6 = 3!/2!/3 * 5/4 7/24 = 3!/2!/3 * 5/4 * 7/6 ... 4. 将每一项相加,得到最终的结果: 1+3/2+5/6+7/24+...+(2n-1)/n! = (1+3+5/2+7/6+...+(2n-1)/(n-1)!)/n! 其中,分子的部分是一个等差数列,公差为 1,首项为 1,末项为 2n-1。根据等差数列求和公式,可得: 1+3+5/2+7/6+...+(2n-1)/(n-1)! = n!(2n-1)/(n+1) 将其代入原式,得到: 1+3/2+5/6+7/24+...+(2n-1)/n! = (n!(2n-1)/(n+1))/n! 化简可得: 1+3/2+5/6+7/24+...+(2n-1)/n! = (2n-1)/(n+1) 因此,原式的结果为 (2n-1)/(n+1)。 ### 回答2: 这个数列的通项公式可以写为:(2n-1)/n!。 其中,“n!”表示n的阶乘,即n的所有正整数乘积,例如3!=3×2×1=6。因为阶乘的增长速度非常快,所以当n变得很大时,分母n!的影响会变得越来越大,而分子2n-1的影响会变得越来越小,因此数列的通项公式趋近于0。 此外,对于每个n,(2n-1)/n!的值都是正数,因为分子2n-1是奇数,分母n!是正整数,所以其值必须是正的。 换句话说,这是一个非常逐渐递减的正数数列,其值越来越接近于0,直到最后几乎为0。实际上,在n趋近于无穷大时,这个数列的极限为0,可以用数学方法证明。 总之,这个数列的通项公式为(2n-1)/n!,它是一个非常小的逐渐递减的正数数列,趋近于0,并且在n趋近于无穷大时,其极限为0。 ### 回答3: 首先要理解题目中的表达式。这是一个数列,每一项的分子是奇数数列(1,3,5,7,9……)从1开始第n项的数,分母是从1开始的n的阶乘(1!,2!,3!,4!……)。 我们可以通过一些计算来推导出数列的通项公式。假设数列的通项公式是an=m/n!,其中m是一个关于n的函数,那么我们可以通过递推式来计算这个函数的值。 根据递推式,我们可以列出以下的等式: an = (2n-1)/(n!) = (2n-1)/(n(n-1)!) = 2(n-1)+1/(n-1)!n an-1 = (2n-3)/((n-1)!) = (2n-3)/((n-1)(n-2)!)) = 2(n-2)+1/((n-2)!)(n-1) 因为an-1和an都有分母是(n-1)!的部分,我们可以消去它们,然后得到以下的等式: an = [(2n-1)/n]an-1 我们可以通过递推得出: a1 = 1/1! a2 = 3/2! a3 = 5/3! …… an = [(2n-1)/n]an-1 我们可以通过上面的递推式计算出更多项,然后发现这个数列的通项公式是: an = (2n-1)/n! 现在我们可以证明这个公式,然后验证它的正确性。我们可以通过数学归纳法来证明这个公式。首先,当n=1时,公式成立,因为: a1 = (2×1-1)/1! = 1/1! 式子左边的值为a1,等于式子右边的值,所以公式成立。 然后,假设当n=k时,公式也成立,即: ak = (2k-1)/k! 我们需要证明当n=k+1时,公式也成立,那么: ak+1 = (2(k+1)-1)/(k+1)! = (2k+1)/(k+1)×(2k-1)/k! = [(2k+1)/k]×[(2k-1)/k!] = [(2k-1)/k!]×[(2k+1)/k+1] = ak×[(2k+1)/(k+1)] 这个式子和递推式是一样的,所以我们已经证明了这个公式成立。 因此,我们可以得出这个数列的通项公式是an=(2n-1)/n!,这个公式是正确的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值