拓扑排序

848. 有向图的拓扑序列

给定一个 nn 个点 mm 条边的有向图,点的编号是 11 到 nn,图中可能存在重边和自环。

请输出任意一个该有向图的拓扑序列,如果拓扑序列不存在,则输出 −1−1。

若一个由图中所有点构成的序列 AA 满足:对于图中的每条边 (x,y)(x,y),xx 在 AA 中都出现在 yy 之前,则称 AA 是该图的一个拓扑序列。

输入格式

第一行包含两个整数 nn 和 mm。

接下来 mm 行,每行包含两个整数 xx 和 yy,表示存在一条从点 xx 到点 yy 的有向边 (x,y)(x,y)。

输出格式

共一行,如果存在拓扑序列,则输出任意一个合法的拓扑序列即可。

否则输出 −1−1。

数据范围

1≤n,m≤1051≤n,m≤105

输入样例:

3 3
1 2
2 3
1 3

输出样例:

1 2 3

在acwing上面看到大佬的思维图 

 

 

#include <iostream>
#include <cstring>
#include <algorithm>
const int N = 1e5 + 10;
int h[N], e[N],ne[N],idx;
int n,m;
int d[N];
int q[N];
void add(int a, int b)  // 添加一条边a->b
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
bool topsort()
{
    int hh = 0, tt = -1;

    // d[i] 存储点i的入度
    for (int i = 1; i <= n; i ++ )
        if (!d[i])
            q[ ++ tt] = i;

    while (hh <= tt)
    {
        int t = q[hh ++ ];

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (-- d[j] == 0)
                q[ ++ tt] = j;
        }
    }

    // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
    return tt == n - 1;
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);
    for(int i=0;i<m;i++)
    {
        int a,b;
        scanf("%d %d",&a,&b);
        add(a, b);
        d[b]++;//指向b的路径++
    }
    if(!topsort()) puts("-1");
    else
    {
        for(int i=0;i<n;i++) printf("%d ",q[i]);
        puts("");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星辰予曦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值