848. 有向图的拓扑序列
给定一个 nn 个点 mm 条边的有向图,点的编号是 11 到 nn,图中可能存在重边和自环。
请输出任意一个该有向图的拓扑序列,如果拓扑序列不存在,则输出 −1−1。
若一个由图中所有点构成的序列 AA 满足:对于图中的每条边 (x,y)(x,y),xx 在 AA 中都出现在 yy 之前,则称 AA 是该图的一个拓扑序列。
输入格式
第一行包含两个整数 nn 和 mm。
接下来 mm 行,每行包含两个整数 xx 和 yy,表示存在一条从点 xx 到点 yy 的有向边 (x,y)(x,y)。
输出格式
共一行,如果存在拓扑序列,则输出任意一个合法的拓扑序列即可。
否则输出 −1−1。
数据范围
1≤n,m≤1051≤n,m≤105
输入样例:
3 3
1 2
2 3
1 3
输出样例:
1 2 3
在acwing上面看到大佬的思维图
#include <iostream>
#include <cstring>
#include <algorithm>
const int N = 1e5 + 10;
int h[N], e[N],ne[N],idx;
int n,m;
int d[N];
int q[N];
void add(int a, int b) // 添加一条边a->b
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
bool topsort()
{
int hh = 0, tt = -1;
// d[i] 存储点i的入度
for (int i = 1; i <= n; i ++ )
if (!d[i])
q[ ++ tt] = i;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (-- d[j] == 0)
q[ ++ tt] = j;
}
}
// 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
return tt == n - 1;
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for(int i=0;i<m;i++)
{
int a,b;
scanf("%d %d",&a,&b);
add(a, b);
d[b]++;//指向b的路径++
}
if(!topsort()) puts("-1");
else
{
for(int i=0;i<n;i++) printf("%d ",q[i]);
puts("");
}
return 0;
}