自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 收藏
  • 关注

原创 高通AI应用程序开发4:情感分析--

介绍介绍情感分析 (SA) 是一种技术,用于识别给定文本的极性,例如积极、消极。当前项目是一个基于Transformer 模型的 OnDevice 情感分析示例 Android 应用程序,该模型在上进行微调,使用适用于 AI 框架的高通®神经处理 SDK 加速。本项目中使用的型号是 :是 BERT_LARGE 的精简版本,同时配备了瓶颈结构以及自我注意和前馈网络之间精心设计的平衡。在本项目中,我们将展示如何在 Snapdragon 上有效地转换、部署和加速模型,以执行设备上情感分析。先决条件。

2024-09-29 15:53:36 850

原创 高通AI应用程序开发5:模型运行snpe-net-run

情感分析 (SA) 是一种技术,用于识别给定文本的极性,例如积极、消极。当前项目是一个基于Transformer 模型的 OnDevice 情感分析示例 Android 应用程序,该模型在上进行微调,使用适用于 AI 框架的高通®神经处理 SDK 加速。本项目中使用的型号是 :是 BERT_LARGE 的精简版本,同时配备了瓶颈结构以及自我注意和前馈网络之间精心设计的平衡。在本项目中,我们将展示如何在 Snapdragon 上有效地转换、部署和加速模型,以执行设备上情感分析。

2024-09-29 14:29:59 1194

原创 高通AI应用程序开发3:网络模型(三)模型转换

机器学习框架具有用于存储神经网络模型的特定格式。Qualcomm®神经处理SDK通过将这些模型转换为框架中立的深度学习容器(DLC)格式来支持这些不同的模型。工具将tflite模型转换为等效的Qualcomm®神经处理SDK dlc文件。以下命令将Inception v3 TFLite模型转换为Qualcomm®神经处理SDK DLC文件。基于MLIR的TFLite转换器的某些旧版本存在一些已知问题,可能会导致加载模型失败。将训练好的Tensorflow模型转换为TFLte模型(.tflite)文件。

2024-09-26 10:39:39 453

原创 高通AI应用程序开发3:网络模型(二)用户定义操作

Qualcomm®神经处理SDK允许用户以用户定义操作(以下简称UDO)的形式插入运行时引擎可能不固有支持的自定义神经网络操作。这些可能是在流行的训练框架(如Tensorflow)中定义的操作,也可能是基于框架扩展构建的自定义操作,但在Qualcomm®神经处理SDK中不可用。它们可以在任何支持的硬件加速器上本地执行。Qualcomm®神经处理SDK提供了以无缝方式执行这些操作的基础设施,与执行内部支持的操作相比,几乎没有开销。

2024-09-24 18:58:48 968

原创 高通AI应用程序开发3:网络模型(一)

非量化DLC文件使用网络参数的32位浮点表示。量化的DLC文件使用网络参数的定点表示,通常为8位权重【weight】和8或32位偏差【biase】。不动点表示与Tensorflow量化模型中使用的不动点表示相同。

2024-09-24 18:44:48 2307

原创 高通AI应用程序开发2:Qualcomm 神经处理 SDK 设置

Linux 平台依赖项主机操作系统Qualcomm® 神经处理 SDK 已通过 Ubuntu 22.04 LTS (Focal) Linux 主机操作系统的验证。Qualcomm® 神经处理 SDK 还经过验证,可在适用于 Linux 的 Windows 子系统 (WSL2) 环境版本 1.1.3.0 中运行。但目前仅限于 Linux 主机可运行的工件,例如转换器、模型生成和运行工具。要设置您自己的 WSL2 环境,请按照提供的说明进行操作。Python。

2024-09-24 17:25:35 1137

原创 高通AI应用程序开发1:SNPE 概述

模型训练是在流行的深度学习框架上进行的(高通®神经处理SDK支持PyTorch、TFLite、ONNX和TensorFlow模型。)训练完成后,训练后的模型被转换为DLC文件,可以加载到高通®神经加工SDK运行时中。调用 snpe-dlc-quant 和 snpe-dlc-graph-prepare(用于向后兼容)将网络模型转换为可由Qualcomm®神经处理SDK加载的DLC文件。可选地量化DLC文件,以便在Hexagon DSP上运行。使用Qualcomm®神经处理SDK运行时加载并执行模型。

2024-09-24 16:51:56 1114

原创 高通AI应用程序开发0:SDK 概述

可根据自身对 Qualcomm 软件的访问权限下载并安装 SDK。下表提供了已注册用户和未注册用户所需的信息。Qualcomm SDK 提供编译和开发 AI/ML 应用程序、多媒体应用程序和机器人应用程序所需的工具。Note下载某个产品 SDK 时,将会安装该产品 SDK 中包含的功能 SDK。

2024-09-24 16:30:43 582

原创 Qualcomm AI Hub模型优化1: Whisper-Base-En导出及问题解决

先安装cmake,再安装samplerate【直接安装samplerate会失败】在执行步骤3-4时,会报找不到samplerate包的错误。继续下载whisper包。

2024-09-24 14:28:06 590

原创 Qualcomm AI Hub的入门指南0.1:AI Hub Module

上述脚本优化了设备上执行的模型,在云托管的高通平台设备上分析了模型,在设备上运行了模型,并比较了基于本地CPU的PyTorch运行和设备上运行的准确性。最后,您可以在设备上运行推理的完整演示。Models是一组最先进的机器学习模型,针对性能进行了优化,可部署在Qualcomm平台设备上。您可以探索针对视觉、语音、文本和生成性AI应用程序的设备部署进行优化的模型。的简单示例,可以轻松导出并部署在设备上。有关更多详细信息,请参阅。在设备外验证后,您可以在几分钟内在托管的高通平台设备上运行此模型。

2024-09-20 15:43:51 681

原创 Qualcomm AI Hub的入门指南4:设备Devices

返回的设备列表包含与所有提供的筛选器匹配的设备。以下代码选择所有具有Snapdragon®8 Gen 2 SOC和Android OS版本12及以上的设备。设备可以进一步按属性进行过滤。以下示例选择了所有支持TensorFlow Lite的Snapdragon®8 Gen 2 SOC设备。可以根据名称、操作系统或属性过滤设备。要获取特定设备,请按名称和操作系统进行筛选。如果多个设备与提供的筛选器匹配,则选择具有最新可用操作系统版本的任意设备。名称、操作系统和属性也可用于使用device类选择单个设备。

2024-09-20 11:12:22 266

原创 Qualcomm AI Hub API: submit_inference_job

注意,在 Python 3.7 及以上版本中,字典是有序的,这一点对于匹配模型输入模式很重要。: 一个布尔值,指定如果因为速率限制导致作业创建失败,是否应该定期重试直到成功。例如,如果模型是从一个编译作业中获取的目标模型,并且该编译作业在提交时指定了。: 指定推理作业的输入数据。一个字符串,表示指向一个 HDF5 格式数据集文件的路径。(可能是指一个特定格式的模型,用于推理)。对象的列表,表示作业将在哪些设备上执行。对象,每个对象对应一个设备上的作业。对象,代表提交的推理作业。获取的编译作业的目标模型。

2024-09-20 11:00:25 510

原创 Qualcomm AI Hub的入门指南3:运行推理

在具有专用硬件的移动和边缘设备上运行任何模型可能与在其参考环境中运行不同。例如,当你的PyTorch实现以float32精度运行推理时,目标硬件可能会使用float16甚至int8运行计算。这可能会导致数值差异,以及流量不足和溢流的可能性。这是否会对您的结果产生不利影响取决于您的模型和数据分布。推理作业为您提供了一种上传输入数据、在真实硬件上运行推理和下载输出结果的方法。通过将这些结果直接与您的参考实现进行比较,您可以确定优化后的模型是否按预期工作。

2024-09-20 10:38:34 977

原创 Qualcomm AI Hub的入门指南0:环境配置

建议使用Miniconda来管理您的python版本和环境。

2024-09-19 16:19:35 823

原创 Qualcomm AI Hub API: submit_compile_job

例如,可以指定为TensorFlow Lite(.tflite)、Qualcomm AI Engine Direct模型库(针对AArch64 Android的.so文件)、QNN上下文二进制文件(针对特定硬件的.bin文件)、ONNX Runtime(.onnx)或带有预编译QNN上下文二进制文件的ONNX Runtime模型。它定义了目标模型(如TFLite模型)的输入名称和形状(可选地包括数据类型)。如果模型是ONNX模型,则此参数是可选的,可用于覆盖模型的输入名称和输入形状的动态范围。

2024-09-19 16:01:08 730

原创 Qualcomm AI Hub的入门指南1:模型编译

将 PyTorch 编译为 TensorFlow LiteQualcomm AI Hub 支持编译使用以下方法训练的模型:PyTorch 插件ONNXTensorFlow(通过 ONNX)上述任何模型都可以针对以下目标运行时进行编译TensorFlow Lite(推荐给 Android 开发者)(推荐给 Windows 开发人员)

2024-09-19 15:32:55 2507

原创 【新版系统集成项目管理工程师】第五章

是指在部署的时候准备新旧两个部署版本,通过域名解析切换的方式将用户使用环境切换到新 版本中,当出现问题的时候,可以快速地将用户环境切回旧版本,并对新版本进行修复和调整。是指当有新版本发布的时候,先让少量的用户使用新版本,并且观察新版本是否存在问题, 如果出现问题,就及时处理并重新发布,如果一切正常,就稳步地将新版本适配给所有。当应用的需求改变时,在不修改软件实体的源代码或者二进制 代码的前提下,可以扩展模块的功能,使其满足新的需求。其目的是降低类之间的耦 合度,提高模块的相对独立性。

2024-09-12 21:40:51 1054

原创 【新版系统集成项目管理工程师】第三章 第四章

1. 服务的特征包括:无形性,不可分离性,可变性和不可储存性等。2.IT服务业具有高知识和高技术含量,高集群性,服务过程的交互性,服务的非独立性,知识密集性,产业内部呈金字塔分布,法律和契约的强依赖性以及声誉机制等特征。3.IT服务的产业化进程分为三个阶段。4.ITSS给出了IT服务的基本原理,由。IT服务(能力要素)由组成,简称PPTR。人员-要求-正确选人;过程-正确做事;技术-高效做事;资源-保障做事。IT服务生命周期由四个阶段组成,分别是简称为SDOR。

2024-09-12 00:50:50 711

原创 【新版系统集成项目管理工程师】第二章 信息技术发展

微机电系统(MEMS)是由微传感器,微执行器,信号处理和控制电路,通信接口和电源等部件组成的一体 化的微型器件系统。其目标是把信息的获取,处理和执行集成在一起,组成具有多功能的微型系统,集成于 大尺寸系统中,从而大幅地提高系统的自动化,智能化和可靠性水平。它将使对象实现智能 化的控制,涉及5个重要的技术部分:机器,传感器硬件,通信网络,中间件和应用。网络层由各种网络,包括互联网,广电网,网络管理系统和云计算平台等组成,是整个物联网的中枢,负责传递 和处理感知层获取的信息。

2024-09-11 00:02:46 712 1

原创 【新版系统集成项目管理工程师】第一章 信息化发展

它既是工业数字化,网络化, 智能化转型的基础设施,也是互联网,大数据,人工智能与实体经济深度融合的应用模式,同时也是一种新 业态,新产业,将重塑企业形态,供应链和产业链。信息基础设施包括: ①以5G, 物联网,工业互联网,卫星互联网为代表的通信网络基础设施:②以人工智能,云计算,区块链等 为代表的新技术基础设施;融合基础设施主要指深度应用互联网,大数据,人工智能等技术,支撑传统基础设 施转型升级,进而形成的融合基础设施。信息化的时域是一个长期的过程, 它的空域是政治,经济,文化,军事和社会的一切领域;

2024-09-09 23:46:26 1617

原创 【系统集成项目管理工程师】新教材变动及备考策略

结束采购”的内容补充到了“控制采购”和“结束项目或阶段”两个过程里。“项目人力资源管理”改变为“项目资源管理”,强调项目团队管理的同时也突出了“实物资源”管理的重要性。“项目整体管理”改变为“项目整合管理”,以此强调项目管理中“合”的重要性。“估算活动资源”由“项目进度管理”知识领域改变为“项目资源管理”知识领域。2. 增加了三个过程:“管理项目知识”、“实施风险应对”、“控制资源”“管理项目知识”属于执行过程组和项目整合管理知识领域。规划干系人管理-修改为规划干系人参与。管理项目团队-修改为管理团队。

2024-09-05 21:56:58 298

原创 【系统集成项目管理工程师】1.备考策略

破解策略:KSS:看题眼Key-找来源Source-对比选项Selection。计算题优先、练习套路法、答题序列化、管理术语化、分析结构化。分类:客观题、简答题、分析题。知识点串学、考点定位。

2024-09-05 21:37:32 204

原创 UNIX练习2:创建一个守护进程,然后使用fork创建子进程,之后kill子进程,让父进程可以通过信号感知子进程退出事件

【代码】UNIX练习2:创建一个守护进程,然后使用fork创建子进程,之后kill子进程,让父进程可以通过信号感知子进程退出事件。

2023-06-25 22:31:08 85

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除