一. 串的基本定义和基础操作
1. 串的定义
串,即字符串(String)是由零个或多个字符组成的有限序列。一般记为S=‘a102…0n’(n>=0)
其中,S是串名,单引号括起来的字符序列是串的值;a可以是字母、数字或其他字符;串中字符的个数n称为串的长度。n=0时的串称为空串(用0表示)。
子串:串中任意个连续的字符组成的子序列。
主串:包含子串的串。
字符在主串中的位置:字符在串中的序号。
2.串的基本操作
子串在主串中的位置:子串的第一个字符在主串中的位置。
StrAssign(&T,chars):赋值操作。把串T赋值为chars。
StrCopy(&T,S):复制操作。由串S复制得到串T。
StrEmpty(S):判空操作。若S为空串,则返回TRUE,否则返回FALSE。
StrLength(S):求串长。返回串S的元素个数。
ClearString(&S):清空操作。将S清为空串。
DestroyString(&S):销毁串。将串S销毁(回收存储空间)。
Concat(&T,S1,S2):串联接。用T返回由S1和S2联接而成的新串。
SubString(&Sub,S,pos,len):小求子串。用Sub返回串S的第pos个字符起长度为len 的子串。
index(S,T):定位操作。若主串S中存在与串T值相同的子串,则返回它在主串S中第一 次出现的位置;否则函数值为0。
StrCompare(S,T):小比较操作。若S>T,则返回值>0:若S=T,则返回值=0:若S<T,则返回值<0。
3.字符集编码
任何数据存到计算机中一定是二进制数。
需要确定一个字符和二进制数的对应规则,这就是“编码”。
二. 串的存储结构
1.串的顺序存储
//静态数组实现(定长顺序存储)
typedef struct{
char ch[MAXLEN]; //每个变量分储一个字符
int length; //串的实际长度
}SString;
//动态数组实现(堆分配存储)
typedef struct{
char *ch;
int length;
}HString;
void InitHString(HString &S)
{
S.ch=(char *)malloc(MAXLEN*sizeof(char));
S.length=0;
}
2.基本操作的实现
//求子串
bool SubString(SString &Sub,SString S,int pos,int len){
//子串范围越界
if(pos+len-1>S.length)
return false;
for(int i=pos;i<pos+len;i++)
Sub.ch[i-pos+1] =S.ch[i];
Sub.length=len;
return ture;
}
//比较。若S>T,则返回值>0
int StrCompare(SString S,SString T){
for(int i=1;i<=S.length&&i<T.length;i++){
if(S.ch[i]!=T.ch[i])
return S.ch[i]-T.ch[i];
}
return S.length-T.length;
}
//定位
int Index(SString S,SString T){
int i=1,n=StrLength(S),m=StrLength(T);
SString sub; //用于暂存子串
while(i<n-m+1){
SubString(sub,S,i,m);
if(StrCompare(sub,T)!=0)
++i;
else
return i;
}
return 0;
}
三. 字符串模式匹配
1.朴素模式匹配算法
主串长度为n,模式串长度为m
朴素模式匹配算法:将主串所有长度为的子串依次与模式串对比,直到找到完全匹配的子串或所有的子串都不匹配为止。
//朴素模式匹配算法
int Index(SString S,SString T){
int i=1;j=1;
while(i<=S.length&&j<=T.length){
if(S.ch[i]==T.ch[j]){
++i;++j;
}
else{
i=i-j+2;
j=1;
}
}
if(j>T.length)
return i-T.length;
else
return 0;
}
最坏时间复杂度=O(nm)
2. KMP算法
next数组:当模式串的第j个字符匹配失败时,令模式串跳到next[j]再继续匹配
next数组手算方法一:当第i个字符匹配失败,由前1~j-1个字符组成的串记为S,则:
next[j] = S的最长相等前后缀长度 + 1
特别地,next[1]=0,next[2]=1
next数组手算方法二
//求模式串T的next数组
void get_next(SString T,int next[]){
int i=1;j=0;
next[1]=0;
while(i<T.length){
if(j==0||T.ch[i]==T.ch[j]){
++i;++j;
//若pi=pj,则next[j+1]=next[j]+1
next[i]=j;
}
else
j=next[j];//否则令j=next[j],循环继续。
}
}
//模式匹配KMP,next[]
int Index_KMP(SString S,SString T){
int i=1;j=1;
int next[T.length+1];
get_next(T,next);
while(i<=S.length&&j<=T.length){
if(j==0||S.ch[i]==T.ch[i]){
++i;
++j; //比较后继字符
}
else
j=next[j]; //模式串向右移动
}
if(j>T.length)
return i-T.length; //匹配成功
else
return 0;
}
最坏时间复杂度:(n+m)
3. KMP算法优化【优化next[]】
本质上是对next数组的优化。