高数笔记(二)--记录一些零碎的知识点

为啥我就写了一句话发布半小时不到就有人点赞收藏?你们真的不是机器人吗?能不能在评论区留言下😂

1.为什么反常积分要先判断收敛再用奇偶性

这是由反常积分定义来的,如果要拓展就引入柯西主值判断有限的对称区间,以及柯西主值加收敛速度判断无穷的区间

2.f(x)=A+o(1)里的o(1)只是个无穷小量,他不一定等于任何一个函数或者0。只要知道存在这个无穷小量使之极限存在成为充要条件。

3.混合偏导相等的条件是混合偏导连续

4.逆的转置等于转置的逆

5.A是B的充要条件,必要性是A推B,充分性是B推A

6.线代方程组Ax,解系求解,选哪个作为未知变量都可以吗?不一定是A向量组里极大无关组以外的向量,只要选的那个变量同一行内可以表征其他的xi即可。如仅有一行的情况,选取任意非0位置作为位置变量即可。

7.秩为明确值特别是1的情况下直接列出方程。!!!

8.证明A是B的充要条件,必要性是A推B,充分性是B推A;A的充分条件是B,是B推A;A是B的充分条件是A推B

9.区间和有界可导的关系

函数可导可导意味着首先函数是连续的,而导函数不一定连续;

接下来搭配区间可以得到函数的特性:

        无穷区间,如果有界则原函数不能单调,不能振荡但是可以类似sinx那种;如果无界则没有限制x

        开区,如果有界则是可去间断点;没有有界限制则可以无界1/x

再搭配导函数进行下一步研究:

因为可导所以导函数只有两种可能:连续或振荡

        无穷区间:如果原来的函数有界,则原函数在趋于无穷时只能是单调性变化等函数sinx,sinx^2/x等或者常数,而这里一旦出现sinx导函数容易振荡,即使不震荡出现cosx时导致导函数趋于无穷时没有极限;而常数的导数为0(导函数x趋于无穷的极限);

        如果原来的函数无界就没有限制了,导函数在趋于0时无穷,注意是极限为无穷就好,可导当然不可能是无穷。

(这里对一道题进行解析,运用到上面知识点的运用,但是需要进一步联想拓展:如果导数极限存在导数只能是0,因为一旦单调性不断变化导数不存在极限,故一定在趋于无穷时原函数极限变成常数)

        开区:如果原来函数有界,则该点是可去间断点,导函数有两种情况一是存在任意有限值,一种是不存在振荡;

        如果原来函数无界则没有限制,导数可以趋于无穷也可以不存在

10.:一种题型:xx比xx大的概率

记录一下概率论的一个考点,因为这个考点一旦考到想不到这个方法基本上就做不出来了,但是其实考到的频率还挺低

如果是几何概型设每一段为x,y积分求面积就好;

如果是古典概型,就要考虑到全概率公式:如下题型

第一个数取定第二个数取值范围也确定,因此遍历每个第一个数取法用全概率公式把这些条件概率加起来才是正解

ps:顺道贴一下古典概型的tips:(1)求极值中排列组合不好计算,设极值点与极值点左右的两个点,比值大于一消去排列组合数;(2)古典概型中已知最后的结果,不要减去,如抽10个中有3个次品,抽样结果最后一个是次品,不要C9取2做分母,要C10取3做分母同时在分子补上C3取1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值